AWFisher_pvalue | R Documentation |
R package for fast computing for adaptively weighted fisher's method
AWFisher_pvalue(p.values)
p.values |
Input G by K p-value matrix. Each row represent a gene and each column represent a study. Note that K has to be >=2 and <=100. |
fast computing for adaptively weighted fisher's method
A list consisting of AWFisher pvalues and AWweight.
pvalues |
AWFisher pvalues. |
weights |
G by K binary weight matrix W. $W_gk = 1$ represents for gene $g$, study $k$ contributes to the meta-analysis result. $W_gk = 0$ otherwise. |
Zhiguang Huo
K <- 40 G <- 10000 p.values = matrix(rbeta(K*G, 1,1), ncol=K) res = AWFisher_pvalue(p.values) hist(res$pvalues, breaks=40) table(rowSums(res$weights)) pvalues=res$pvalues[order(res$pvalues)] plot(-log10((1:NROW(pvalues))/(1+NROW(pvalues))), -log10(pvalues),xlab='theoretical quantile', ylab='observed quantile') lines(c(0,100), c(0,100), col=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.