View source: R/biomarkerCategorization.r
biomarkerCategorization | R Documentation |
biomarker categrorization
biomarkerCategorization(studies, afunction, B = 10, DEindex = NULL, fdr = NULL, silence = FALSE)
studies |
a list of K studies. Each element (kth study) of the list is another list consisting gene expression matrix and and label information. |
afunction |
A function for DE analysis. Options can be function_limma or function_edgeR. Default option is function_limma. However, use could define their own function. The input of afunction should be list(data, label) which is consistent with one element of the studies list/argument. The return of afunction should be list(pvalue=apvalue, effectSize=aeffectsize) |
B |
number of permutation should be used. B=1000 is suggested. |
DEindex |
If NULL, BH method will be applied to p-values and FDR 0.05 will be used. User could specify a logical vector as DEindex. |
fdr |
Default is 0.05. The co-membership matrix calculation will base on genes with this specified fdr. |
silence |
If TRUE, will print out the bootstrapping procedure. |
biomarker categrorization via boostrap AW weight.
A list consisting of biomarker categrorization result.
varibility |
Varibility index for all genes |
dissimilarity |
Dissimilarity matrix of genes of DEindex==TRUE |
DEindex |
DEindex for Dissimilarity |
Zhiguang Huo
N0 = 10 G <- 1000 GDEp <- 50 GDEn <- 50 K = 4 studies <- NULL set.seed(15213) for(k in seq_len(K)){ astudy <- matrix(rnorm(N0*2*G),nrow=G,ncol=N0*2) ControlLabel <- seq_len(N0) caseLabel <- (N0 + 1):(2*N0) astudy[1:GDEp,caseLabel] <- astudy[1:GDEp,caseLabel] + 2 astudy[1:GDEp + GDEn,caseLabel] <- astudy[1:GDEp + GDEn,caseLabel] - 2 alabel = c(rep(0,length(ControlLabel)),rep(1,length(caseLabel))) studies[[k]] <- list(data=astudy, label=alabel) } result <- biomarkerCategorization(studies,function_limma,B=100,DEindex=NULL) sum(result$DEindex) head(result$varibility) print(result$dissimilarity[1:4,1:4])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.