knitr::opts_chunk$set(echo = TRUE)
Starting from version 1.1.0, the \verb|gfoRmula| package supports a simplified approach to specify interventions. This document describes how to specify interventions using this approach. This document assumes that readers have read the long-form package documentation of McGrath et al. (2020).
Note that \verb|gfoRmula| maintains backwards compatibility in the sense that users may continue to specify interventions using the previous approach (i.e., based on specifying the arguments \verb|interventions|, \verb|intvars|, and \verb|int_times|).
To specify interventions, users can supply arguments with the following naming requirements:
For example, an argument with the name \verb|intervention1.A| specifies the first intervention, which intervenes on variable \verb|A|.
Each intervention argument takes as input a list with the following elements:
The example below specifies an "always treat" intervention on \verb|A|: \begin{verbatim} intervention1.A = list(static, rep(1, time_points)) \end{verbatim}
The next example specifies a threshold intervention strategy on \verb|A| with a lower bound of 1: \begin{verbatim} intervention1.A = list(threshold, 1, Inf) \end{verbatim}
The next example specifies a joint intervention on \verb|A1| and \verb|A2| of always treat. Both \verb|A1| and \verb|A2| are intervened on at all time points except the last one. \begin{verbatim} intervention1.A1 = list(static, rep(1, time_points), int_times = 0:(time_points - 2)) intervention1.A2 = list(static, rep(1, time_points), int_times = 0:(time_points - 2)) \end{verbatim}
The next sections illustrate complete examples.
library('gfoRmula') library('data.table')
In this example, we re-perform the analysis in Example 1 in McGrath et al. (2020) using the new intervention specification.
id <- 'id' time_points <- 7 time_name <- 't0' covnames <- c('L1', 'L2', 'A') outcome_name <- 'Y' outcome_type <- 'survival' covtypes <- c('binary', 'bounded normal', 'binary') histories <- c(lagged, lagavg) histvars <- list(c('A', 'L1', 'L2'), c('L1', 'L2')) covparams <- list(covmodels = c(L1 ~ lag1_A + lag_cumavg1_L1 + lag_cumavg1_L2 + L3 + t0, L2 ~ lag1_A + L1 + lag_cumavg1_L1 + lag_cumavg1_L2 + L3 + t0, A ~ lag1_A + L1 + L2 + lag_cumavg1_L1 + lag_cumavg1_L2 + L3 + t0)) ymodel <- Y ~ A + L1 + L2 + L3 + lag1_A + lag1_L1 + lag1_L2 + t0 nsimul <- 10000 gform_basic <- gformula(obs_data = basicdata_nocomp, id = id, time_points = time_points, time_name = time_name, covnames = covnames, outcome_name = outcome_name, outcome_type = outcome_type, covtypes = covtypes, covparams = covparams, ymodel = ymodel, histories = histories, histvars = histvars, basecovs = c('L3'), nsimul = nsimul, seed = 1234, intervention1.A = list(static, rep(0, time_points)), intervention2.A = list(static, rep(1, time_points)), int_descript = c('Never treat', 'Always treat')) gform_basic
In this example, we apply a custom intervention that assigns treatment if \verb|L2| is below a certain threshold. We first define the custom intervention function.
example_intervention <- function(newdf, pool, intvar, intvals, time_name, t){ newdf[, (intvar) := 0] newdf[L2 < intvals[[1]], (intvar) := 1] }
Next, we apply the g-formula with this custom intervention where we consider different thresholds for \verb|L2|.
gform_basic <- gformula(obs_data = basicdata_nocomp, id = id, time_points = time_points, time_name = time_name, covnames = covnames, outcome_name = outcome_name, outcome_type = outcome_type, covtypes = covtypes, covparams = covparams, ymodel = ymodel, histories = histories, histvars = histvars, basecovs = c('L3'), nsimul = nsimul, seed = 1234, intervention1.A = list(example_intervention, 0.8), intervention2.A = list(example_intervention, 1), int_descript = c('Treat if L2 < 0.8', 'Treat if L2 < 1')) gform_basic
McGrath S, Lin V, Zhang Z, Petito LC, Logan RW, HernĂ¡n MA, Young JG. gfoRmula: an R package for estimating the effects of sustained treatment strategies via the parametric g-formula. Patterns. 2020 Jun 12;1(3).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.