Description Usage Arguments Value Examples
Training by using nerual network with gradient descending ( real numbers for regression ).
1 2 3 4 5 6 7 8 | NNetIterations(
X.mat,
y.vec,
max.iterations,
step.size,
n.hidden.units,
is.train
)
|
X.mat |
(feature matrix, n_observations x n_features) |
y.vec |
(label vector, n_observations x 1) |
max.iterations |
(int scalar > 1) |
step.size |
(the steps size used when decending) |
n.hidden.units |
(number of hidden units) |
is.train |
(logical vector of size n_observations, TRUE if the observation is in the train set, FALSE for the validation set) |
pred.mat (n_observations x max.iterations matrix of predicted values or n x k)
W.mat:final weight matrix (n_features+1 x n.hidden.units or p+1 x u)
v.vec: final weight vector (n.hidden.units+1 or u+1).
predict (testX.mat): a function that takes a test features matrix and returns a vector of predictions ( real numbers for regression ) The first row of W.mat should be the intercept terms; the first element of v.vec should be the intercept term.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | Hard coded example
------------------
hard_incidence <- as.numeric(c(84.106289446623, 55.328513822534, 38.106289446623, 45.345737285, 24.324, 30.324))
hard_emission <- as.numeric(c(38.288719431206, 0.13392142633291, 4.573728543534, 23.737285372, 54.345, 14.4))
hard_phase <- as.numeric(c(120.59515694473, 55.329415379509, 100.1339214473, 154.9728542, 55.57, 47.00))
NNtestX.mat <- as.matrix(data.frame(hard_incidence, hard_emission, hard_phase))
NNtestY.vec <- as.numeric(c(0.0607816, 0.078306 , 0.098325, 0.052368, .0163620, 0.0757853))
max.iterations <- as.integer(10)
step.size <- as.numeric(0.05)
NNtest.is.train <- as.logical(c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE))
# 3 hidden units
results <- NNetIterations(NNtestX.mat, NNtestY.vec, max.iterations, step.size, as.integer(5), NNtest.is.train)
results$prediction(NNtestX.mat)
need other example that works for modern R
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.