| trans_gamma | R Documentation |
Simulate gamma-beta diversity relationships under specific species distribution, and plot the result based on <doi:10.1038/s41467-020-19228-4>. The beta diversity is defined as the average distance-to-centroid value and measured as the average distance (or compositional dissimilarity) from one sample to the centroid of the group.
new()This function is used to simulate gamma-beta diversity relationships under specific species distribution.
trans_gamma$new(dataset = NULL, group = NULL, method = "bray", seed = 123)
datasetdefault NULL; microtable object; used for the observed pattern.
groupdefault NULL; a column name in sample_table; used as the different species pool for groups.
methoddefault "bray"; dissimilarity indices; see vegdist function and method parameter in vegan package;
or "wei_unifrac" or "unwei_unifrac" in microtable$cal_betadiv().
seeddefault 123; random seed used for the fixed random number generator for the repeatability.
parameters in object.
\donttest{
library(microeco)
data(dataset)
test1 <- trans_gamma$new(dataset = dataset, group = "Type", method = "bray")
}
cal_observed()Calculate observed gamma and beta diversity for each group. The beta diversity is defined as mean dispersion from the centroid based on the distance matrix. The gamma diversity is defined as the total species observed.
trans_gamma$cal_observed(sample_size = NULL)
sample_sizedefault NULL; a numeric vector for the rarefied and uniform individual numbers in each sample; If null, use the observed data; If provided, use the rarefied data, e.g. c(500, 2000).
res_observed in object.
\donttest{
test1$cal_observed(sample_size = NULL)
}
plot_observed()Plot the observed result.
trans_gamma$plot_observed( x_axis_title = "Gamma diversity", y_axis_title = "Beta diversity", ... )
x_axis_titledefault "Gamma diversity"; x axis title.
y_axis_titledefault "Beta diversity"; y axis title.
...parameters pass to the function plot_scatterfit in trans_env Class.
ggplot.
\donttest{
test1$plot_observed(cor_method = "spearman")
}
cal_simulation()Simulate gamma-beta diversity relationships under log-normal abundance distribution without any measured data.
trans_gamma$cal_simulation( gamma_vect = seq(1, 10000, by = 200), ind_vect = c(500, 1500, 3000, 5500, 10000), ncom = 100 )
gamma_vectdefault seq(1, 10000, by = 200); a vector as gamma diversity.
ind_vectdefault c(500, 1500, 3000, 5500, 10000); a vector as individuals per plot.
ncomdefault 100; number of communities; how many communities or samples in the region or the studied species pool.
res_simulation in object.
\donttest{
test1$cal_simulation(ncom = 20, ind_vect = c(200, 1000, 2000))
}
plot_simulation()Plot the simulation result.
trans_gamma$plot_simulation( color_values = RColorBrewer::brewer.pal(8, "Dark2"), show_point = TRUE, point_size = 0.3, point_alpha = 0.6, add_fitting = FALSE, ... )
color_valuescolors used for presentation.
show_pointdefault TRUE; whether show the point.
point_sizedefault .3; point size value.
point_alphadefault .6; point alpha value.
add_fittingdefault FALSE; whether add fitted line.
...parameters pass to ggplot2::geom_line (when add_fitting = FALSE) or ggplot2::geom_smooth (when add_fitting = TRUE).
colordefault "SampleID"; color mapping in the plot.
ggplot.
\donttest{
test1$plot_simulation()
}
print()Print the trans_gamma object.
trans_gamma$print()
clone()The objects of this class are cloneable with this method.
trans_gamma$clone(deep = FALSE)
deepWhether to make a deep clone.
## ------------------------------------------------
## Method `trans_gamma$new`
## ------------------------------------------------
library(microeco)
data(dataset)
test1 <- trans_gamma$new(dataset = dataset, group = "Type", method = "bray")
## ------------------------------------------------
## Method `trans_gamma$cal_observed`
## ------------------------------------------------
test1$cal_observed(sample_size = NULL)
## ------------------------------------------------
## Method `trans_gamma$plot_observed`
## ------------------------------------------------
test1$plot_observed(cor_method = "spearman")
## ------------------------------------------------
## Method `trans_gamma$cal_simulation`
## ------------------------------------------------
test1$cal_simulation(ncom = 20, ind_vect = c(200, 1000, 2000))
## ------------------------------------------------
## Method `trans_gamma$plot_simulation`
## ------------------------------------------------
test1$plot_simulation()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.