Description Usage Arguments Details Value Modified Cross Validation Author(s) References Examples
A screening and one-step linearization infused DAC
1 | solid.mcv.fun(dat.list, niter, ridge)
|
dat.list |
dataset |
niter |
number of iterations |
ridge |
using ridge penalty for initial value |
Modified cross validation for SOLID method
auc.mcv
returns auc obtained by modified cross validation
auc.mcv.se
returns the standard error for auc obtained by modified cross validation
roc.mcv.mtx
returns the accuracy table obtained by modified cross validation
To assess the accuracy of a predictive re- gression model, we develop a modified cross-validation (MCV) that utilizes the side products of the SOLID hence substantially reduce the computational burden. Compared with existing DAC methods, the MCV procedure is the first effort to make inference on accuracy.
Chuan Hong
Hong, C., Wang, Y. and Cat T. (2019). A Divide-and-Conquer Method for Sparse Risk Prediction and Evaluation (under revision).
1 2 3 4 5 6 7 8 9 10 11 | N=1e5
p.x=50
K=10
n=N/K
niter=3
cor=0
b0=-8
bb = c(1, 0.8, 0.4, 0.2, 0.1)
beta0 = c(b0, bb, rep(0, p.x - length(bb)))
dat.list=sim.list.fun(nn=N,K=10,p.x=50,cor=0.2,beta0)
SOLID.mcv=solid.mcv.fun(dat.list, niter=3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.