Description Usage Arguments Details Value Author(s) References Examples
The function simulateDataList
simulate a data list of class
caperpyData
using the model modelCountDetectBinREY
used in the
paper. This dataset can be used to test the effect of unaccounted
variation and/or double counts in the detection process.
The functions simulateN
and simulateDataList2
also
simulate the model, but decompose the simulation of the state process
(simulateN
) and the simulation of the detection process
(simulateDataList2
).
1 2 3 4 5 | simulateDataList(coefs, dataList, betaBinDelta = NULL, doubleCountsp = NULL)
simulateN(coefs, dataList)
simulateDataList2(coefs, dataList, simn, betaBinDelta = NULL, doubleCountsp = NULL)
|
coefs |
An object of class |
dataList |
An object of class |
betaBinDelta |
numeric value of the parameter |
doubleCountsp |
numeric value indicating the probability that a detected male is counted twice. |
simn |
numeric vector containing the values of the number of males
simulated on the leks by the function |
This function can be used to simulate a dataset from the model used in the paper. The parameters used to simulate the model are the median of the posterior distribution. This function can be used to generate extra-binomial variation to the data, or to simulate double counts in the data. This function has been used in the vignette to assess the sensitivity of our model to unaccounted variation in the detection probability and to double counts.
The functions simulateN
and simulateDataList2
also
simulate the model, but decompose the whole process: simulateN
simulates the true numbers of males on the leks and
simulateDataList2
simulates the detected number of males, given
the true numbers passed as arguments (see the vignette for an example
of use).
simulateN
return a vector of length n, where n is the number of
lek/periods in dataList
.
simulateDataList
and simulateDataList2
return an object
of class "caperpySim"
.
Clement Calenge clement.calenge@ofb.gouv.fr
Calenge C., Menoni E., Milhau B., Foulche K, Chiffard J., Marchandeau S. (in prep.). The participatory monitoring of the capercaillie in the French Pyrenees.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ## We work on the dataset lekcounts
head(lekcounts)
## We prepare the dataset to fit the model with JAGS
dataList <- dataCount2jags(lekcounts$lek, lekcounts$period,
lekcounts$nbobs, lekcounts$nbmales,
lekcounts$gr, as.numeric(factor(lekcounts$type)),
lekcounts$natun, lekcounts$year)
dataList
## We then fit the model. WARNING!!! THIS COMMAND IS VERY SLOW AND
## CAN TAKE SEVERAL HOURS
## Note that the result is stored as a dataset in the package
## Not run:
coefModelCountDetectBinREY <- fitModelCount(dataList, "modelCountDetectBinREY")
## End(Not run)
## Example of use
dl <- simulateDataList(coefModelCountDetectBinREY, dataList,
betaBinDelta = 0.05, doubleCountsp = 0.4)
## Which is equivalent to:
ne <- simulateN(coefModelCountDetectBinREY, dataList)
dl2 <- simulateDataList2(coefModelCountDetectBinREY, dataList, ne,
betaBinDelta = 0.05, doubleCountsp = 0.4)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.