FactorKernel | R Documentation |
Initialize kernel object
k_FactorKernel(
s2 = 1,
D,
nlevels,
xindex,
p_lower = 0,
p_upper = 0.9,
p_est = TRUE,
s2_lower = 1e-08,
s2_upper = 1e+08,
s2_est = TRUE,
p,
useC = TRUE,
offdiagequal = 1 - 1e-06
)
s2 |
Initial variance |
D |
Number of input dimensions of data |
nlevels |
Number of levels for the factor |
xindex |
Index of the factor (which column of X) |
p_lower |
Lower bound for p |
p_upper |
Upper bound for p |
p_est |
Should p be estimated? |
s2_lower |
Lower bound for s2 |
s2_upper |
Upper bound for s2 |
s2_est |
Should s2 be estimated? |
p |
Vector of correlations |
useC |
Should C code used? Not implemented for FactorKernel yet. |
offdiagequal |
What should offdiagonal values be set to when the indices are the same? Use to avoid decomposition errors, similar to adding a nugget. |
R6Class
object.
For a factor that has been converted to its indices. Each factor will need a separate kernel.
Object of R6Class
with methods for fitting GP model.
GauPro::GauPro_kernel
-> GauPro_kernel_FactorKernel
p
Parameter for correlation
p_est
Should p be estimated?
p_lower
Lower bound of p
p_upper
Upper bound of p
p_length
length of p
s2
variance
s2_est
Is s2 estimated?
logs2
Log of s2
logs2_lower
Lower bound of logs2
logs2_upper
Upper bound of logs2
xindex
Index of the factor (which column of X)
nlevels
Number of levels for the factor
offdiagequal
What should offdiagonal values be set to when the indices are the same? Use to avoid decomposition errors, similar to adding a nugget.
new()
Initialize kernel object
FactorKernel$new( s2 = 1, D, nlevels, xindex, p_lower = 0, p_upper = 0.9, p_est = TRUE, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE, p, useC = TRUE, offdiagequal = 1 - 1e-06 )
s2
Initial variance
D
Number of input dimensions of data
nlevels
Number of levels for the factor
xindex
Index of the factor (which column of X)
p_lower
Lower bound for p
p_upper
Upper bound for p
p_est
Should p be estimated?
s2_lower
Lower bound for s2
s2_upper
Upper bound for s2
s2_est
Should s2 be estimated?
p
Vector of correlations
useC
Should C code used? Not implemented for FactorKernel yet.
offdiagequal
What should offdiagonal values be set to when the indices are the same? Use to avoid decomposition errors, similar to adding a nugget.
k()
Calculate covariance between two points
FactorKernel$k(x, y = NULL, p = self$p, s2 = self$s2, params = NULL)
x
vector.
y
vector, optional. If excluded, find correlation of x with itself.
p
Correlation parameters.
s2
Variance parameter.
params
parameters to use instead of beta and s2.
kone()
Find covariance of two points
FactorKernel$kone(x, y, p, s2, isdiag = TRUE, offdiagequal = self$offdiagequal)
x
vector
y
vector
p
correlation parameters on regular scale
s2
Variance parameter
isdiag
Is this on the diagonal of the covariance?
offdiagequal
What should offdiagonal values be set to when the indices are the same? Use to avoid decomposition errors, similar to adding a nugget.
dC_dparams()
Derivative of covariance with respect to parameters
FactorKernel$dC_dparams(params = NULL, X, C_nonug, C, nug)
params
Kernel parameters
X
matrix of points in rows
C_nonug
Covariance without nugget added to diagonal
C
Covariance with nugget
nug
Value of nugget
C_dC_dparams()
Calculate covariance matrix and its derivative with respect to parameters
FactorKernel$C_dC_dparams(params = NULL, X, nug)
params
Kernel parameters
X
matrix of points in rows
nug
Value of nugget
dC_dx()
Derivative of covariance with respect to X
FactorKernel$dC_dx(XX, X, ...)
XX
matrix of points
X
matrix of points to take derivative with respect to
...
Additional args, not used
param_optim_start()
Starting point for parameters for optimization
FactorKernel$param_optim_start( jitter = F, y, p_est = self$p_est, s2_est = self$s2_est )
jitter
Should there be a jitter?
y
Output
p_est
Is p being estimated?
s2_est
Is s2 being estimated?
param_optim_start0()
Starting point for parameters for optimization
FactorKernel$param_optim_start0( jitter = F, y, p_est = self$p_est, s2_est = self$s2_est )
jitter
Should there be a jitter?
y
Output
p_est
Is p being estimated?
s2_est
Is s2 being estimated?
param_optim_lower()
Lower bounds of parameters for optimization
FactorKernel$param_optim_lower(p_est = self$p_est, s2_est = self$s2_est)
p_est
Is p being estimated?
s2_est
Is s2 being estimated?
param_optim_upper()
Upper bounds of parameters for optimization
FactorKernel$param_optim_upper(p_est = self$p_est, s2_est = self$s2_est)
p_est
Is p being estimated?
s2_est
Is s2 being estimated?
set_params_from_optim()
Set parameters from optimization output
FactorKernel$set_params_from_optim( optim_out, p_est = self$p_est, s2_est = self$s2_est )
optim_out
Output from optimization
p_est
Is p being estimated?
s2_est
Is s2 being estimated?
s2_from_params()
Get s2 from params vector
FactorKernel$s2_from_params(params, s2_est = self$s2_est)
params
parameter vector
s2_est
Is s2 being estimated?
print()
Print this object
FactorKernel$print()
clone()
The objects of this class are cloneable with this method.
FactorKernel$clone(deep = FALSE)
deep
Whether to make a deep clone.
kk <- FactorKernel$new(D=1, nlevels=5, xindex=1)
kk$p <- (1:10)/100
kmat <- outer(1:5, 1:5, Vectorize(kk$k))
kmat
kk$plot()
# 2D, Gaussian on 1D, index on 2nd dim
if (requireNamespace("dplyr", quietly=TRUE)) {
library(dplyr)
n <- 20
X <- cbind(matrix(runif(n,2,6), ncol=1),
matrix(sample(1:2, size=n, replace=TRUE), ncol=1))
X <- rbind(X, c(3.3,3))
n <- nrow(X)
Z <- X[,1] - (X[,2]-1.8)^2 + rnorm(n,0,.1)
tibble(X=X, Z) %>% arrange(X,Z)
k2a <- IgnoreIndsKernel$new(k=Gaussian$new(D=1), ignoreinds = 2)
k2b <- FactorKernel$new(D=2, nlevels=3, xind=2)
k2 <- k2a * k2b
k2b$p_upper <- .65*k2b$p_upper
gp <- GauPro_kernel_model$new(X=X, Z=Z, kernel = k2, verbose = 5,
nug.min=1e-2, restarts=0)
gp$kernel$k1$kernel$beta
gp$kernel$k2$p
gp$kernel$k(x = gp$X)
tibble(X=X, Z=Z, pred=gp$predict(X)) %>% arrange(X, Z)
tibble(X=X[,2], Z) %>% group_by(X) %>% summarize(n=n(), mean(Z))
curve(gp$pred(cbind(matrix(x,ncol=1),1)),2,6, ylim=c(min(Z), max(Z)))
points(X[X[,2]==1,1], Z[X[,2]==1])
curve(gp$pred(cbind(matrix(x,ncol=1),2)), add=TRUE, col=2)
points(X[X[,2]==2,1], Z[X[,2]==2], col=2)
curve(gp$pred(cbind(matrix(x,ncol=1),3)), add=TRUE, col=3)
points(X[X[,2]==3,1], Z[X[,2]==3], col=3)
legend(legend=1:3, fill=1:3, x="topleft")
# See which points affect (5.5, 3 themost)
data.frame(X, cov=gp$kernel$k(X, c(5.5,3))) %>% arrange(-cov)
plot(k2b)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.