Description Format Value Methods Public fields Active bindings Methods Examples
Class providing object with methods for adapt.concept2.sFFLHD.R6
Class providing object with methods for adapt.concept2.sFFLHD.R6
R6Class
object.
Object of R6Class
with methods for running an
adaptive experiment.
For full documentation of each method go to https://github.com/CollinErickson/DOE-Code
new(X, Z, corr="Gauss", verbose=0, separable=T,
useC=F,useGrad=T,
parallel=T, nug.est=T, ...)
This method is used to create object
of this class with X
and Z
as the data.
update(Xnew=NULL, Znew=NULL, Xall=NULL, Zall=NULL,
restarts = 5,
param_update = T, nug.update = self$nug.est)
This method updates the model, adding new data if given, then running optimization again.
X
Design matrix
Z
Responses
b
batch size
func
Actual function to get experiment values from
nb
Number of batches, if you know before starting
D
Dimension of data
Xopts
Available points
X0
Initial design
package
Which GP package to use in IGP
stats
List of tracked stats
iteration
Which iteration
mod
The GP model from
func_run_together
Whether points should be passed to func separately as vectors or all together as a matrix whose rows are the points.
func_fast
If the function is fast. If TRUE then full plots are made. In practice this is alway FALSE.
new_batches_per_batch
How many batches of candidate points are added for each batch taken.
X_tracker
data.frame tracking the points of X, such as when they were selected.
X0
An initial matrix of points to be used.
Xopts
A matrix of candidate (option) points.
Xopts_tracker
A data.frame tracking the points of Xopts.
batch.tracker
Tracks when points were added to Xopts.
Xopts_removed
A matrix of points removed from Xopts.
s
The design object for generating candidate points.
design
A string saying which design object should be used.
stats
A data.frame giving stats for each iteration.
iteration
The current iteration.
obj
A string saying what the objective is.
obj_func
A function for the objective.
n0
The initial number of points to be selected.
take_until_maxpvar_below
A number, if the proportion of points near the maximum variance of the GP model, then it will take space-filling points.
package
Which GP package should be used by IGP. You should stick with "laGP_GauPro_kernel", but could also use "laGP".
force_old
A number saying how often the oldest candidate points should be forced into the design.
force_pvar
A number saying how often the points with the highest predictive variance should be forced into the design.
des_func
The desirability function.
des_func_fast
Whether the des_func is fast for candidate points.
alpha_des
The alpha constant for the weight function.
actual_des_func
The true des func used to evaluate the model, not known in practice
weight_const
The weight constant in the weight function, usually 1.
selection_method
What the selection method should be.
parallel
Should new values be calculated in parallel?
verbose
How much detail should be printed to the console. 0 is minimal, 1 is medium, 2 is a lot.
nb
Number of batches, if you know before starting
adapt.concept2.sFFLHD.R6$select_new_points_from_old_or_pvar()
adapt.concept2.sFFLHD.R6$select_new_points_from_max_des_red()
new()
adapt.concept2.sFFLHD.R6$new( D, L, b = NULL, package = "laGP_GauPro_kernel", obj = NULL, n0 = 0, stage1batches = NULL, force_old = 0, force_pvar = 0, useSMEDtheta = F, func, func_run_together = FALSE, func_fast = TRUE, take_until_maxpvar_below = NULL, design = "sFFLHD", selection_method, X0 = NULL, Xopts = NULL, des_func, des_func_fast = TRUE, alpha_des = 1, new_batches_per_batch = 5, parallel = FALSE, parallel_cores = "detect", nugget = 1e-06, estimate.nugget = TRUE, verbose = 1, design_seed = numeric(0), weight_const = 0, error_power = 2, nconsider = Inf, nconsider_random = 0, ... )
run()
adapt.concept2.sFFLHD.R6$run(maxit, plotlastonly = F, noplot = F)
run1()
adapt.concept2.sFFLHD.R6$run1(plotit = TRUE)
add_data()
adapt.concept2.sFFLHD.R6$add_data()
update_obj_nu()
adapt.concept2.sFFLHD.R6$update_obj_nu(Xnew, Znew)
update_mod()
adapt.concept2.sFFLHD.R6$update_mod()
set_params()
adapt.concept2.sFFLHD.R6$set_params()
update_stats()
adapt.concept2.sFFLHD.R6$update_stats()
mse_func()
adapt.concept2.sFFLHD.R6$mse_func()
plot_mean()
adapt.concept2.sFFLHD.R6$plot_mean(cex = 1, plot.axes = TRUE)
plot_se()
adapt.concept2.sFFLHD.R6$plot_se(cex = 1, plot.axes = TRUE)
plot_abserr()
adapt.concept2.sFFLHD.R6$plot_abserr(cex = 1, plot.axes = TRUE)
plot_mse()
adapt.concept2.sFFLHD.R6$plot_mse(statsdf, cex = 1)
plot_iwe()
adapt.concept2.sFFLHD.R6$plot_iwe(statsdf, cex = 1)
plot_ppu()
adapt.concept2.sFFLHD.R6$plot_ppu(statsdf, cex)
plot_des_v_acc()
adapt.concept2.sFFLHD.R6$plot_des_v_acc(cex, cex.axis)
plot_y_acc()
adapt.concept2.sFFLHD.R6$plot_y_acc(residual = FALSE)
plot_1D()
adapt.concept2.sFFLHD.R6$plot_1D()
plot_2D()
adapt.concept2.sFFLHD.R6$plot_2D(twoplot = FALSE, cex = 1)
plot1()
adapt.concept2.sFFLHD.R6$plot1(twoplot = FALSE, cex = 1)
add_new_batches_to_Xopts()
adapt.concept2.sFFLHD.R6$add_new_batches_to_Xopts( num_batches_to_take = self$new_batches_per_batch )
Xopts_tracker_add()
adapt.concept2.sFFLHD.R6$Xopts_tracker_add(Xnew)
Xopts_tracker_remove()
adapt.concept2.sFFLHD.R6$Xopts_tracker_remove(newL)
select_new_points_from_old_or_pvar()
adapt.concept2.sFFLHD.R6$select_new_points_from_old_or_pvar()
select_new_points_from_SMED()
adapt.concept2.sFFLHD.R6$select_new_points_from_SMED()
select_new_points_from_max_des()
adapt.concept2.sFFLHD.R6$select_new_points_from_max_des()
select_new_points_from_max_des_red()
adapt.concept2.sFFLHD.R6$select_new_points_from_max_des_red()
int_werror_after_adding()
adapt.concept2.sFFLHD.R6$int_werror_after_adding( Xnew = NULL, Znew = NULL, Xnew_Xoptsrow = NULL, n = 10000, int_points = NULL, seed = NULL, ... )
add_newL_points_to_design()
adapt.concept2.sFFLHD.R6$add_newL_points_to_design( newL = NULL, use_X0 = FALSE, reason )
calculate_Z()
adapt.concept2.sFFLHD.R6$calculate_Z(X)
weight_func()
adapt.concept2.sFFLHD.R6$weight_func( ..., XX, mod = self$mod, des_func = self$des_func, alpha = self$alpha_des, weight_const = self$weight_const )
werror_func()
adapt.concept2.sFFLHD.R6$werror_func( ..., XX, mod = self$mod, des_func = self$des_func, alpha = self$alpha_des, weight_const = self$weight_const, weight_func = self$weight_func, error_power = self$error_power )
intwerror_func()
adapt.concept2.sFFLHD.R6$intwerror_func( ..., XX = NULL, N = 10000, mod = self$mod, des_func = self$des_func, alpha = self$alpha_des, weight_const = self$weight_const, weight_func = self$weight_func, error_power = self$error_power )
int_pvar_red_for_opts()
adapt.concept2.sFFLHD.R6$int_pvar_red_for_opts( ..., Xopts, XX = NULL, N = 10000, mod = self$mod, des_func = self$des_func, alpha = self$alpha_des, weight_const = self$weight_const, weight_func = self$weight_func, delta_pvar_func = mean )
int_pvar_red_for_one()
adapt.concept2.sFFLHD.R6$int_pvar_red_for_one( v, X_, XX, corr_func, Kinv, s2, K_X_XX, delta_pvar_func = mean )
actual_intwerror_func()
adapt.concept2.sFFLHD.R6$actual_intwerror_func( ..., N = 2000, mod = self$mod, f = self$func, error_power = self$error_power, nquantilegroups )
print_results()
adapt.concept2.sFFLHD.R6$print_results()
delete()
adapt.concept2.sFFLHD.R6$delete()
clone()
The objects of this class are cloneable with this method.
adapt.concept2.sFFLHD.R6$clone(deep = FALSE)
deep
Whether to make a deep clone.
1 2 3 4 5 6 7 8 9 10 11 12 | # wing weight, grad_norm2_mean, laGP_GauPro_kernel
set.seed(1)
a <- adapt.concept2.sFFLHD.R6$new(
D=10,L=5,func=TestFunctions::wingweight, nugget = 1e-7,estimate.nugget = TRUE,
obj="desirability", des_func=des_func_grad_norm2_mean,
actual_des_func=NULL,#get_num_actual_des_func_grad_norm2_mean(),
stage1batches=6, alpha_des=1, weight_const=0,
package="laGP_GauPro_kernel", design='sFFLHD_Lflex',
error_power=2,
selection_method="max_des_red_all_best"
);
a$run(2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.