#' @title autocompboost_default_params
#' @description
#' Default tuning search space for autocompboost.
#' @param task_type (`character(1L)`) \cr
#' Task type. `"classif"` for classification or `"regr"` for regression.
#' @param tuning_method (`character(1L)`) \cr
#' Tuning method, choice of `"mbo"` `"smashy"` and `"hyperband"`. This is necessary since `"hyperband"` and `"smashy"` need a budget parameter.
#' @return [`ParamSet`][paradox::ParamSet]
#' @export
autocompboost_default_params = function(task_type, tuning_method) {
if (tuning_method %in% c("hyperband", "smashy")) {
if (task_type == "classif") {
return(
ps(
classif.compboost.learning_rate = p_int(lower = -14, upper = -1, trafo = function(x) 2^x),
classif.compboost.top_interactions = p_dbl(lower = 0.01, upper = 0.2),
subsample.frac = p_dbl(lower = 0.5, upper = 1, tags = "budget")
)
)
} else if (task_type == "regr") {
return(
ps(
regr.compboost.learning_rate = p_int(lower = -14, upper = -1, trafo = function(x) 2^x),
regr.compboost.top_interactions = p_dbl(lower = 0.01, upper = 0.2),
subsample.frac = p_dbl(lower = 0.5, upper = 1, tags = "budget")
)
)
}
} else if (tuning_method == "mbo") {
if (task_type == "classif") {
return(
ps(
classif.compboost.learning_rate = p_int(lower = -14, upper = -1, trafo = function(x) 2^x),
classif.compboost.top_interactions = p_dbl(lower = 0.01, upper = 0.2)
)
)
} else if (task_type == "regr") {
return(
ps(
regr.compboost.learning_rate = p_int(lower = -14, upper = -1, trafo = function(x) 2^x),
regr.compboost.top_interactions = p_dbl(lower = 0.01, upper = 0.2)
)
)
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.