#' adjustr: Stan Model Adjustments and Sensitivity Analyses using Importance
#' Sampling
#'
#'
#' Functions to help assess the sensitivity of a Bayesian model to the
#' specification of its likelihood and priors, estimated using the rstan
#' package. Users provide a series of alternate sampling specifications, and the
#' package uses Pareto-smoothed importance sampling to estimate posterior
#' quantities of interest under each specification.
#'
#' See the list of key functions and the example below.
#' Full package documentation available at \url{https://corymccartan.github.io/adjustr/}.
#'
#' @section Key Functions:
#' \itemize{
#' \item \code{\link{make_spec}}
#' \item \code{\link{adjust_weights}}
#' \item \code{\link{summarize}}
#' \item \code{\link{plot}}
#' }
#'
#' @import rlang
#' @importFrom purrr map_chr map map2
#' @import dplyr
#'
#' @docType package
#' @name adjustr-package
NULL
# internal; to store shared package objects
pkg_env = new_environment()
.onLoad = function(libname, pkgname) { # nocov start
# create the Stan parser
#tryCatch(get_parser(), error = function(e) {})
utils::globalVariables(c("name", "pos", "value", ".y", ".y_ol", ".y_ou",
".y_il", ".y_iu", ".y_med", "quantile", "median"))
# Grab even more distributions from `extraDistr` if available
distrs_onload()
} # nocov end
#> NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.