knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
An R package to study feature correlations aided with data transformation for Next Generation sequencing and microarray data
The development version from GitHub with:
# install.packages("devtools") devtools::install_github("DKundnani/FeatureCorr")
Following is an example of function usage by utilizing sample data provided in the package. It contains Gene-Tissue Expression dataset with ~8000 genes(features) expression in 53 tissues, sampled from a larger dataset containing >42K genes.
Another dataset is from The Cancer Genome Atlas Pan Cancer dataset randomly selected 2000 samples from >10K samples, with information for selected 40 features(genes)
library(FeatureCorr) #Loading the library
Data Transformation using FeatureCorr::data_transform function
#Data Transformation transdf<- data_transform(df=GTEX[-1],transformation='log2', featurelist=GTEX$Description, medianthres=1)
Data Transformation using FeatureCorr::data_transform function Prime Feature Correlation using FeatureCorr::primefeature_corr function
# Prime Feature(RNASEH2A gene) Correlation in Gene-Tissue EXpression Dataset inputdf<-transdf[[1]] #First item in the list returned is the transformed Data primefcorr <- primefeature_corr(df=inputdf,featurelist=rownames(inputdf) ,primefeature="RNASEH2A")
Visualizing Single Pair Correlation using using FeatureCorr::pair_scatter function
#Single Pair Scatter on Original RNA-seq Dataset vs log2 transformed RNA-seq Dataset pair_scatter(df=TCGA40,featurelist=rownames(TCGA40),feature1="RNASEH2A",feature2="PCNA", corrmeth='pearson')[[1]] pair_scatter(df=logTCGA40,featurelist=rownames(logTCGA40),feature1="RNASEH2A", feature2="PCNA", corrmeth='pearson')[[1]]
Visualizing Multiple Pair-wise Correlation using FeatureCorr::pairwise_corr function
#Multiple pairwise correlation for 40 genes in ~10K samples in The Cancer Genome Atlas-Pan Cancer dataset corr_pair<-pairwise_corr(df=logTCGA40,featurelist=rownames(logTCGA40), visorder="hclust", clustno=2) # Separating feature of interest for visualization # In This technique you can group features of differen types. For example if I have methylation and transcription data in the same dataframe for same set of feature identfiers featgroup<-grepl( "RNASE",rownames(logTCGA40)) #optional, a set of features to separated corr_pair<-pairwisecorr <- pairwise_corr(df=logTCGA40,featurelist=rownames(logTCGA40),featuregroup=featgroup)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.