m.euclidean.dist: Diversity as separation: mean Euclidean distance

Description Usage Arguments Details Value Author(s) References Examples

Description

This function computes mean Euclidean distance for quantifying diversity as separation.

Usage

1
  m.euclidean.dist(X, min, max, method = c("biemann", "harrison"))

Arguments

X

A numeric vector with group data.

min

The minimum value for the random variable.

max

The maximum value for the random variable.

method

String vector. 2 possible values: "biemann" and "harrison"

Details

Mean Euclidean distance (MED) is defined as the square root of the mean squared differences between the ith member and all others in the group. The minimum value is zero and the maximum value depends on the parity of the group size. m.euclideand.dist provides statistic value computed by means of the empirical data, theoretical maximum value and normalized value. In order to compute statistic, the function uses the formula provided by Harrison and Klein (2007):

MED = {{∑\limits_{i = 1}^n {√ {∑\limits_{j = 1}^n {≤ft( {x_i - x_j } \right)^2 } /n} } } \over n} .

The function also includes the formula proposed by Biemann and Kearney (2010):

MED = {{∑\limits_{i = 1}^n {∑\limits_{j = 1}^n {{{√ {≤ft( {x_i - x_j } \right)^2 } } \over {n - 1}}} } } \over n} .

Value

The function returns a list of class deviation with following components:

call

Function call.

method

Method used for computing MED.

data

Original data vector.

min

Minimum value for the random variable.

max

Maximum value for the random variable.

med

Mean Euclidean distance.

med.max

Maximum value of mean Euclidean distance.

med.norm

Normalized value of mean Euclidean distance.

Author(s)

Antonio Solanas, Rejina M. Selvam, Jose Navarro and David Leiva.

References

Biemann, T., & Kearney, E. (2010). Size does matter: How varying group sizes in a sample affect the most common measures of group diversity, Organizational Research Methods, 3, 582-599.

Harrison, D. A., & Klein, K. J. (2007). What's the difference? Diversity constructs as separation, variety, or disparity in organizations. Academy of Management Review, 32, 1199-1228.

Solanas, A., Selvam, R. M., Navarro, J., & Leiva, D. (2010). On the measurement of diversity in organizations. Unpublished manuscript.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
g.3 <- c(1,1,9)
m.euclidean.dist(g.3,1,9,'b')
m.euclidean.dist(g.3,1,9,'h')

g.4 <- c(2,4,5,6)
m.euclidean.dist(g.4,1,9,'biem')
m.euclidean.dist(g.4,1,9,'har')

g.5 <- c(rep(1,2),rep(9,3))
m.euclidean.dist(g.5,1,9,method='biemann')
m.euclidean.dist(g.5,1,9,method='harrison')

g.10 <- c(rep(1,4),rep(9,5),2)
m.euclidean.dist(g.10,1,9,'biemann')
m.euclidean.dist(g.10,1,9,'harrison')

DLEIVA/diversity documentation built on May 10, 2019, 1:14 a.m.