ModellingParams | R Documentation |
Collects and checks necessary parameters required for data modelling. Apart from data transfomation that needs to be done within cross-validation (e.g. subtracting each observation from training set mean), feature selection, model training and prediction, this container also stores a setting for class imbalance rebalancing.
ModellingParams(
balancing = c("downsample", "upsample", "none"),
transformParams = NULL,
selectParams = SelectParams("t-test"),
trainParams = TrainParams("DLDA"),
predictParams = PredictParams("DLDA"),
doImportance = FALSE
)
balancing |
Default: |
transformParams |
Parameters used for feature transformation inside of C.V.
specified by a |
selectParams |
Parameters used during feature selection specified
by a |
trainParams |
Parameters for model training specified by a |
predictParams |
Parameters for model training specified by a |
doImportance |
Default: |
Dario Strbenac
#if(require(sparsediscrim))
#{
ModellingParams() # Default is differences in means selection and DLDA.
ModellingParams(selectParams = NULL, # No feature selection before training.
trainParams = TrainParams("randomForest"),
predictParams = PredictParams("randomForest"))
#}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.