Description Usage Arguments Value Examples
Calculate LDA topic model
1 | text_lda_dtm(data_dtm, k = 2, burnin = 1000, iter = 1000, keep = 50)
|
data_dtm |
Document-Term matrix as prepared by text_dtm_prep |
k |
Number of topics to detect |
burnin |
parameter for Gibbs LDA |
iter |
parameter for Gibbs LDA |
keep |
parameter for Gibbs LDA |
list with elements: lda_out (full LDA topicmodel), beta (beta scores), gamma (gamma scores), and logLik (Log likelihood of topicmodel object)
1 2 3 4 | tidytext::unnest_tokens(dummy_response, 'word', colnames(dummy_response)[7]) %>%
text_dtm_prep(., 'response_id') %>%
pluck(.,"dtm_prep") %>%
text_lda_dtm(., k = 5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.