components_extract: Extract conditional probabilities and clique potentials from...

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

Extract list of conditional probability tables and list of clique potentials from data.

Usage

1
2
3
4
5
6
7
8
9
extractCPT(data_, graph, smooth = 0)

extractPOT(data_, graph, smooth = 0)

extractMARG(data_, graph, smooth = 0)

marg2pot(mg)

pot2marg(pt)

Arguments

data_

A named array or a dataframe.

graph

A graphNEL object or a list or formula which can be turned into a graphNEL object by calling ug or dag. For extractCPT, graph must be/define a DAG while for extractPOT, graph must be/define undirected triangulated graph.

smooth

See 'details' below.

mg

An object of class marg_rep

pt

An object of class pot_rep

Details

If smooth is non-zero then smooth is added to all cell counts before normalization takes place.

Value

Author(s)

Søren Højsgaard, sorenh@math.aau.dk

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal of Statistical Software, 46(10), 1-26. http://www.jstatsoft.org/v46/i10/.

See Also

compileCPT, compilePOT, grain

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
## Extract cpts / clique potentials from data and graph
# specification and create network. There are different ways:

data(lizard, package="gRbase")

# DAG: height <- species -> diam
daG <- dag(~species + height:species + diam:species)

# UG : [height:species][diam:species]
uG  <- ug(~height:species + diam:species)

pt <- extractPOT(lizard, ~height:species + diam:species) 
cp <- extractCPT(lizard, ~species + height:species + diam:species)

pt
cp

# Both specify the same probability distribution
tabListMult(pt) %>% as.data.frame.table
tabListMult(cp) %>% as.data.frame.table

## Not run: 
# Bayesian networks can be created as
bn.uG   <- grain(pt)
bn.daG  <- grain(cp)

# The steps above are wrapped into a convenience method which
# builds a network from at graph and data.
bn.uG   <- grain(uG, data=lizard)
bn.daG  <- grain(daG, data=lizard)

## End(Not run)

DataSciBurgoon/gRain documentation built on March 25, 2020, 12:02 a.m.