grain_propagate: Propagate a graphical independence network (a Bayesian...

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

Propagation refers to calibrating the cliques of the junction tree so that the clique potentials are consistent on their intersections; refer to the reference below for details.

Usage

1
2
3
4
## S3 method for class 'grain'
propagate(object, details = object$details, engine = "cpp", ...)

propagateLS(cqpotList, rip, initialize = TRUE, details = 0)

Arguments

object

A grain object

details

For debugging info

engine

Either "R" or "cpp"; "cpp" is the default and the fastest.

...

Currently not used

cqpotList

Clique potential list

rip

A rip ordering

initialize

Always true

Details

The propagate method invokes propagateLS which is a pure R implementation of the Lauritzen-Spiegelhalter algorithm. The c++ based version is several times faster than the purely R based version.

Value

A compiled and propagated grain object.

Author(s)

Søren Højsgaard, sorenh@math.aau.dk

References

Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal of Statistical Software, 46(10), 1-26. http://www.jstatsoft.org/v46/i10/.

See Also

grain, compile

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
yn   <- c("yes","no")
a    <- cptable(~asia,              values=c(1,99), levels=yn)
t.a  <- cptable(~tub+asia,          values=c(5,95,1,99), levels=yn)
s    <- cptable(~smoke,             values=c(5,5), levels=yn)
l.s  <- cptable(~lung+smoke,        values=c(1,9,1,99), levels=yn)
b.s  <- cptable(~bronc+smoke,       values=c(6,4,3,7), levels=yn)
e.lt <- cptable(~either+lung+tub,   values=c(1,0,1,0,1,0,0,1), levels=yn)
x.e  <- cptable(~xray+either,       values=c(98,2,5,95), levels=yn)
d.be <- cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels=yn)
chest.cpt <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
chest.bn  <- grain(chest.cpt)
bn1  <- compile(chest.bn, propagate=FALSE)
bn2  <- propagate(bn1)
bn3  <- compile(chest.bn, propagate=TRUE)
 

DataSciBurgoon/gRain documentation built on March 25, 2020, 12:02 a.m.