Description Usage Arguments Details Value Author(s) References See Also Examples
Propagation refers to calibrating the cliques of the junction tree so that the clique potentials are consistent on their intersections; refer to the reference below for details.
1 2 3 4 | ## S3 method for class 'grain'
propagate(object, details = object$details, engine = "cpp", ...)
propagateLS(cqpotList, rip, initialize = TRUE, details = 0)
|
object |
A grain object |
details |
For debugging info |
engine |
Either "R" or "cpp"; "cpp" is the default and the fastest. |
... |
Currently not used |
cqpotList |
Clique potential list |
rip |
A rip ordering |
initialize |
Always true |
The propagate
method invokes propagateLS
which is a pure R implementation of the Lauritzen-Spiegelhalter
algorithm. The c++ based version is several times faster than
the purely R based version.
A compiled and propagated grain object.
Søren Højsgaard, sorenh@math.aau.dk
Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R. Journal of Statistical Software, 46(10), 1-26. http://www.jstatsoft.org/v46/i10/.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | yn <- c("yes","no")
a <- cptable(~asia, values=c(1,99), levels=yn)
t.a <- cptable(~tub+asia, values=c(5,95,1,99), levels=yn)
s <- cptable(~smoke, values=c(5,5), levels=yn)
l.s <- cptable(~lung+smoke, values=c(1,9,1,99), levels=yn)
b.s <- cptable(~bronc+smoke, values=c(6,4,3,7), levels=yn)
e.lt <- cptable(~either+lung+tub, values=c(1,0,1,0,1,0,0,1), levels=yn)
x.e <- cptable(~xray+either, values=c(98,2,5,95), levels=yn)
d.be <- cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels=yn)
chest.cpt <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
chest.bn <- grain(chest.cpt)
bn1 <- compile(chest.bn, propagate=FALSE)
bn2 <- propagate(bn1)
bn3 <- compile(chest.bn, propagate=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.