FSCseq_predict_workflow: Minimal workflow for FSCseq_predict

Description Usage Arguments Value Author(s) References Examples

View source: R/FSCseq_workflow.R

Description

Full FSCseq workflow based on minimal working defaults

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
FSCseq_predict_workflow(
  res,
  X_covar_train = NULL,
  cts_train,
  SF_train = NULL,
  batch_train = NULL,
  X_covar_pred = NULL,
  cts_pred,
  batch_pred = NULL,
  coding = "reference"
)

Arguments

res

Fitted FSCseq result object.

X_covar_train

Optional covariate matrix for training samples (optional additional covariates, except batch)

cts_train

Counts matrix of training samples.

SF_train

Size factors of training samples (optional. If not supplied, can be accessed from res)

batch_train

Batch information for training samples (optional).

X_covar_pred

Optional covariate matrix for prediction samples (optional additional covariates, except batch)

cts_pred

Counts matrix of prediction samples. Should be same dimension as cts_train

batch_pred

Batch information for prediction samples (optional). In estimating the new prediction batch effect, we recommend users to have at least 3-5 samples per cluster per batch for accurate estimation.

coding

Coding scheme for batch (categorical). Default is reference coding.

Value

list with processed.dat.pred (processed prediction data), and prediction results

Author(s)

David K. Lim, deelim@live.unc.edu

References

https://github.com/DavidKLim/FSCseq

Examples

1
2
3
sim.dat = simulateData(B=1, g=10000, K=2, n=50, LFCg=1, pDEg=0.05, beta0=12, phi0=0.35, nsims=1, save_file=F)[[1]]
## Not run: res = FSCseq_workflow(cts=sim.dat$cts, K_search=c(2:3), lambda_search=c(1.0, 1.5), alpha_search=c(0.1, 0.2))
## Not run: pred_results = FSCseq_predict_workflow(res=res, cts_train=sim.dat$cts_train, batch_train=batch, cts_pred=sim.dat$cts_pred, batch_pred=batch_pred)

DavidKLim/FSCseq documentation built on Dec. 12, 2021, 3:46 a.m.