theta.ml2: Theta estimation with penalty

Description Usage Arguments Value

Description

theta.ml() with small ridge penalty to stabilize estimates, and using more efficient digamma and trigamma functions.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
theta.ml2(
  y,
  mu,
  n = sum(weights),
  weights,
  t0 = 0,
  limit = 10,
  eps = .Machine$double.eps^0.25,
  trace = FALSE
)

Arguments

y

cts matrix

mu

mean parameters

n

number of samples

weights

number of weights

t0

initial estimate of dispersion scale parameter

limit

max number of iterations

eps

tolerance

trace

boolean whether to trace progress

Value

theta


DavidKLim/FSCseq documentation built on Dec. 12, 2021, 3:46 a.m.