Description Usage Arguments Details Value Examples
View source: R/diagnose_design.R
Generates diagnosands from a design or simulations of a design.
1 2 3 4 5 | diagnose_design(..., diagnosands = NULL, sims = 500,
bootstrap_sims = 100, add_grouping_variables = NULL)
diagnose_designs(..., diagnosands = NULL, sims = 500,
bootstrap_sims = 100, add_grouping_variables = NULL)
|
... |
A design or set of designs typically created using the + operator, or a |
diagnosands |
A set of diagnosands created by |
sims |
The number of simulations, defaulting to 500. sims may also be a vector indicating the number of simulations for each step in a design, as described for |
bootstrap_sims |
Number of bootstrap replicates for the diagnosands to obtain the standard errors of the diagnosands, defaulting to |
add_grouping_variables |
Variables used to generate groups of simulations for diagnosis. Added to list default list: c("design_label", "estimand_label", "estimator_label", "term") |
If the diagnosand function contains a group_by
attribute, it will be used to split-apply-combine diagnosands rather than the intersecting column names.
If sims
is named, or longer than one element, a fan-out strategy is created and used instead.
If the packages future
and future.apply
are installed, you can set plan
to run multiple simulations in parallel.
a list with a data frame of simulations, a data frame of diagnosands, a vector of diagnosand names, and if calculated, a data frame of bootstrap replicates.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | my_population <- declare_population(N = 500, noise = rnorm(N))
my_potential_outcomes <- declare_potential_outcomes(
Y_Z_0 = noise, Y_Z_1 = noise +
rnorm(N, mean = 2, sd = 2))
my_assignment <- declare_assignment()
my_estimand <- declare_estimand(ATE = mean(Y_Z_1 - Y_Z_0))
my_reveal <- declare_reveal()
my_estimator <- declare_estimator(Y ~ Z, estimand = my_estimand)
design <- my_population +
my_potential_outcomes +
my_estimand +
my_assignment +
my_reveal +
my_estimator
## Not run:
# using built-in defaults:
diagnosis <- diagnose_design(design)
diagnosis
## End(Not run)
# using a user-defined diagnosand
my_diagnosand <- declare_diagnosands(absolute_error = mean(abs(estimate - estimand)))
## Not run:
diagnosis <- diagnose_design(design, diagnosands = my_diagnosand)
diagnosis
get_diagnosands(diagnosis)
get_simulations(diagnosis)
## End(Not run)
# Using an existing data frame of simulations
## Not run:
simulations <- simulate_design(designs, sims = 2)
diagnosis <- diagnose_design(simulations_df = simulations_df)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.