#' Calculate the VIF for data
#'
#' Calculate the Variance Inflation Factor for a dataset.
#'
#' @param mod the data to process
#' @return A matrix containing the VIF and standardised VIF factors
#' @export
#' @examples
#' library(MASS)
#' data("birthwt")
#' vif(lm(bwt ~ low + smoke + age + race, data = birthwt))
#' vif(birthwt)
vif <- function(mod) UseMethod("vif")
#' @export
#' @method vif lm
vif.lm <- function(mod) vif.default(mod)
#' @export
#' @method vif data.frame
#' @importFrom stats as.formula coef coefficients cov2cor lm model.matrix vcov
vif.data.frame <- function(mod, ...) {
mod <- cbind(dummyResponse = 1, mod)
my_formula <- as.formula(mod)
mod <- lm(my_formula, data = mod)
vif.default(mod)
}
vif.default <- function(mod) {
if (any(is.na(coef(mod)))) {
stop("there are aliased coefficients in the model")
}
v <- vcov(mod)
assign <- attr(model.matrix(mod), "assign")
if (names(coefficients(mod)[1]) == "(Intercept)") {
v <- v[-1, -1]
assign <- assign[-1]
}
else {
warning("No intercept: vifs may not be sensible.")
}
terms <- labels(terms(mod))
n.terms <- length(terms)
if (n.terms < 2) {
stop("model contains fewer than 2 terms")
}
R <- cov2cor(v)
detR <- det(R)
result <- matrix(0, n.terms, 3)
rownames(result) <- terms
colnames(result) <- c("GVIF", "Df", "GVIF^(1/(2*Df))")
for (term in 1:n.terms) {
subs <- which(assign == term)
result[term, 1] <- det(as.matrix(R[subs, subs])) * det(as.matrix(R[
-subs,
-subs
])) / detR
result[term, 2] <- length(subs)
}
# if (all(result[, 2] == 1))
# result <- result[, 1]
# else
result[, 3] <- result[, 1]^(1 / (2 * result[, 2]))
result
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.