View source: R/weighted_posteriors.R
weighted_posteriors | R Documentation |
Extract posterior samples of parameters, weighted across models. Weighting is
done by comparing posterior model probabilities, via bayesfactor_models()
.
weighted_posteriors(..., prior_odds = NULL, missing = 0, verbose = TRUE)
## S3 method for class 'data.frame'
weighted_posteriors(..., prior_odds = NULL, missing = 0, verbose = TRUE)
## S3 method for class 'stanreg'
weighted_posteriors(
...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
effects = "fixed",
component = "conditional",
parameters = NULL
)
## S3 method for class 'BFBayesFactor'
weighted_posteriors(
...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
iterations = 4000
)
... |
Fitted models (see details), all fit on the same data, or a single
|
prior_odds |
Optional vector of prior odds for the models compared to
the first model (or the denominator, for |
missing |
An optional numeric value to use if a model does not contain a parameter that appears in other models. Defaults to 0. |
verbose |
Toggle off warnings. |
effects |
Should results for fixed effects ( |
component |
Which type of parameters to return, such as parameters for the conditional model, the zero-inflated part of the model, the dispersion term, etc. See details in section Model Components. May be abbreviated. Note that the conditional component also refers to the count or mean component - names may differ, depending on the modeling package. There are three convenient shortcuts (not applicable to all model classes):
|
parameters |
Regular expression pattern that describes the parameters
that should be returned. Meta-parameters (like |
iterations |
For |
Note that across models some parameters might play different roles. For
example, the parameter A
plays a different role in the model Y ~ A + B
(where it is a main effect) than it does in the model Y ~ A + B + A:B
(where it is a simple effect). In many cases centering of predictors (mean
subtracting for continuous variables, and effects coding via contr.sum
or
orthonormal coding via contr.equalprior_pairs
for factors) can reduce this
issue. In any case you should be mindful of this issue.
See bayesfactor_models()
details for more info on passed models.
Note that for BayesFactor
models, posterior samples cannot be generated
from intercept only models.
This function is similar in function to brms::posterior_average
.
A data frame with posterior distributions (weighted across models) .
For BayesFactor < 0.9.12-4.3
, in some instances there might be
some problems of duplicate columns of random effects in the resulting data
frame.
Clyde, M., Desimone, H., & Parmigiani, G. (1996). Prediction via orthogonalized model mixing. Journal of the American Statistical Association, 91(435), 1197-1208.
Hinne, M., Gronau, Q. F., van den Bergh, D., and Wagenmakers, E. (2019, March 25). A conceptual introduction to Bayesian Model Averaging. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.31234/osf.io/wgb64")}
Rouder, J. N., Haaf, J. M., & Vandekerckhove, J. (2018). Bayesian inference for psychology, part IV: Parameter estimation and Bayes factors. Psychonomic bulletin & review, 25(1), 102-113.
van den Bergh, D., Haaf, J. M., Ly, A., Rouder, J. N., & Wagenmakers, E. J. (2019). A cautionary note on estimating effect size.
bayesfactor_inclusion()
for Bayesian model averaging.
if (require("rstanarm") && require("see") && interactive()) {
stan_m0 <- suppressWarnings(stan_glm(extra ~ 1,
data = sleep,
family = gaussian(),
refresh = 0,
diagnostic_file = file.path(tempdir(), "df0.csv")
))
stan_m1 <- suppressWarnings(stan_glm(extra ~ group,
data = sleep,
family = gaussian(),
refresh = 0,
diagnostic_file = file.path(tempdir(), "df1.csv")
))
res <- weighted_posteriors(stan_m0, stan_m1, verbose = FALSE)
plot(eti(res))
}
## With BayesFactor
if (require("BayesFactor")) {
extra_sleep <- ttestBF(formula = extra ~ group, data = sleep)
wp <- weighted_posteriors(extra_sleep, verbose = FALSE)
describe_posterior(extra_sleep, test = NULL, verbose = FALSE)
# also considers the null
describe_posterior(wp$delta, test = NULL, verbose = FALSE)
}
## weighted prediction distributions via data.frames
if (require("rstanarm") && interactive()) {
m0 <- suppressWarnings(stan_glm(
mpg ~ 1,
data = mtcars,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df0.csv"),
refresh = 0
))
m1 <- suppressWarnings(stan_glm(
mpg ~ carb,
data = mtcars,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df1.csv"),
refresh = 0
))
# Predictions:
pred_m0 <- data.frame(posterior_predict(m0))
pred_m1 <- data.frame(posterior_predict(m1))
BFmods <- bayesfactor_models(m0, m1, verbose = FALSE)
wp <- weighted_posteriors(
pred_m0, pred_m1,
prior_odds = as.numeric(BFmods)[2],
verbose = FALSE
)
# look at first 5 prediction intervals
hdi(pred_m0[1:5])
hdi(pred_m1[1:5])
hdi(wp[1:5]) # between, but closer to pred_m1
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.