poimcar_cpp | R Documentation |
Multivariate Poisson regression with CAR covariance structure
poimcar_cpp(nsim, burnin, thin, eps, mu, beta, nu, rho_s, rho_t, rho_st, X, y, E, Ws, Wt, N, P, mean_beta, tau_beta, eta_nu, psi_nu, fix_rho_s, fix_rho_t, fix_rho_st, range_rho_s, range_rho_t, range_rho_st, type, var_beta_met, var_eps_met, var_log_mu_met, var_rho_met, var_log_nu_met, verbose, c_beta, c_eps, c_mu, c_nu, c_rho, conj_beta)
nsim |
MCMC size |
X |
Covariate matrix |
y |
Response |
E |
Offset |
N |
Dimension of the observations |
P |
Dimension of the covariates |
mean_beta |
Mean a priori to beta vector |
tau_beta |
Variance a priori to beta vector |
eta_nu |
Shape a priori to nu |
psi_nu |
Rate a priori to nu |
type |
TGMRF type (1 to 6) |
var_beta_met |
Variance of beta proposal |
var_eps_met |
Variance of eps proposal |
var_rho_met |
Variance of rho proposal |
var_log_nu_met |
Variance of log(nu) proposal |
M |
Number of neighbors in each area |
W |
Matrix with the neighborhood structure |
rangeRho |
Range to sample rho by using ARMS |
method |
ARMS (0) or Metropolis (1) |
ninit |
Number of initial points in ARMS |
maxpoint |
Maximum number of evaluation in each ARMS iteration |
tau |
Vector of tau parameters to construct Q |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.