| CategoricalParameter | R Documentation |
A class for representing hyperparameters that have a discrete list of possible values.
sagemaker.mlcore::ParameterRange -> CategoricalParameter
.nameHelps to categorise Class
valuesThe possible values for the hyperparameter
new()Initialize a “CategoricalParameter“.
CategoricalParameter$new(values)
values(list or object): The possible values for the hyperparameter. This input will be converted into a list of strings.
as_tuning_range()Represent the parameter range as a dicionary suitable for a request to create an Amazon SageMaker hyperparameter tuning job.
CategoricalParameter$as_tuning_range(name)
name(str): The name of the hyperparameter.
dict[str, list[str]]: A dictionary that contains the name and values of the hyperparameter.
as_json_range()Represent the parameter range as a dictionary suitable for a request to create an Amazon SageMaker hyperparameter tuning job using one of the deep learning frameworks. The deep learning framework images require that hyperparameters be serialized as JSON.
CategoricalParameter$as_json_range(name)
name(str): The name of the hyperparameter.
dict[str, list[str]]: A dictionary that contains the name and values of the hyperparameter, where the values are serialized as JSON.
is_valid()Determine if a value is valid within this CategoricalParameter
CategoricalParameter$is_valid(value)
value(object): Value of the hyperparameter
boolean: TRUE' or 'FALSE'
cast_to_type()cast value to numeric
CategoricalParameter$cast_to_type(value)
valueThe value to be verified.
clone()The objects of this class are cloneable with this method.
CategoricalParameter$clone(deep = FALSE)
deepWhether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.