CategoricalParameter | R Documentation |
A class for representing hyperparameters that have a discrete list of possible values.
sagemaker.mlcore::ParameterRange
-> CategoricalParameter
.name
Helps to categorise Class
values
The possible values for the hyperparameter
new()
Initialize a “CategoricalParameter“.
CategoricalParameter$new(values)
values
(list or object): The possible values for the hyperparameter. This input will be converted into a list of strings.
as_tuning_range()
Represent the parameter range as a dicionary suitable for a request to create an Amazon SageMaker hyperparameter tuning job.
CategoricalParameter$as_tuning_range(name)
name
(str): The name of the hyperparameter.
dict[str, list[str]]: A dictionary that contains the name and values of the hyperparameter.
as_json_range()
Represent the parameter range as a dictionary suitable for a request to create an Amazon SageMaker hyperparameter tuning job using one of the deep learning frameworks. The deep learning framework images require that hyperparameters be serialized as JSON.
CategoricalParameter$as_json_range(name)
name
(str): The name of the hyperparameter.
dict[str, list[str]]: A dictionary that contains the name and values of the hyperparameter, where the values are serialized as JSON.
is_valid()
Determine if a value is valid within this CategoricalParameter
CategoricalParameter$is_valid(value)
value
(object): Value of the hyperparameter
boolean: TRUE' or 'FALSE'
cast_to_type()
cast value to numeric
CategoricalParameter$cast_to_type(value)
value
The value to be verified.
clone()
The objects of this class are cloneable with this method.
CategoricalParameter$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.