DefaultModelMonitor | R Documentation |
Sets up Amazon SageMaker Monitoring Schedules and baseline suggestions. Use this class when you want to utilize Amazon SageMaker Monitoring's plug-and-play solution that only requires your dataset and optional pre/postprocessing scripts. For a more customized experience, consider using the ModelMonitor class instead.
sagemaker.mlcore::ModelMonitor
-> DefaultModelMonitor
JOB_DEFINITION_BASE_NAME
Model definition base name
new()
Initializes a “Monitor“ instance. The Monitor handles baselining datasets and creating Amazon SageMaker Monitoring Schedules to monitor SageMaker endpoints.
DefaultModelMonitor$new( role, instance_count = 1, instance_type = "ml.m5.xlarge", volume_size_in_gb = 30, volume_kms_key = NULL, output_kms_key = NULL, max_runtime_in_seconds = NULL, base_job_name = NULL, sagemaker_session = NULL, env = NULL, tags = NULL, network_config = NULL )
role
(str): An AWS IAM role name or ARN. The Amazon SageMaker jobs use this role.
instance_count
(int): The number of instances to run the jobs with.
instance_type
(str): Type of EC2 instance to use for the job, for example, 'ml.m5.xlarge'.
volume_size_in_gb
(int): Size in GB of the EBS volume to use for storing data during processing (default: 30).
volume_kms_key
(str): A KMS key for the processing volume.
output_kms_key
(str): The KMS key id for the job's outputs.
max_runtime_in_seconds
(int): Timeout in seconds. After this amount of time, Amazon SageMaker terminates the job regardless of its current status. Default: 3600
base_job_name
(str): Prefix for the job name. If not specified, a default name is generated based on the training image name and current timestamp.
sagemaker_session
(sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, one is created using the default AWS configuration chain.
env
(dict): Environment variables to be passed to the job.
tags
([dict]): List of tags to be passed to the job.
network_config
(sagemaker.network.NetworkConfig): A NetworkConfig object that configures network isolation, encryption of inter-container traffic, security group IDs, and subnets.
monitoring_type()
Type of the monitoring job.
DefaultModelMonitor$monitoring_type()
suggest_baseline()
Suggest baselines for use with Amazon SageMaker Model Monitoring Schedules.
DefaultModelMonitor$suggest_baseline( baseline_dataset, dataset_format, record_preprocessor_script = NULL, post_analytics_processor_script = NULL, output_s3_uri = NULL, wait = TRUE, logs = TRUE, job_name = NULL )
baseline_dataset
(str): The path to the baseline_dataset file. This can be a local path or an S3 uri.
dataset_format
(dict): The format of the baseline_dataset.
record_preprocessor_script
(str): The path to the record preprocessor script. This can be a local path or an S3 uri.
post_analytics_processor_script
(str): The path to the record post-analytics processor script. This can be a local path or an S3 uri.
output_s3_uri
(str): Desired S3 destination Destination of the constraint_violations and statistics json files. Default: "s3://<default_session_bucket>/<job_name>/output"
wait
(bool): Whether the call should wait until the job completes (default: True).
logs
(bool): Whether to show the logs produced by the job. Only meaningful when wait is True (default: True).
job_name
(str): Processing job name. If not specified, the processor generates a default job name, based on the image name and current timestamp.
sagemaker.processing.ProcessingJob: The ProcessingJob object representing the baselining job.
create_monitoring_schedule()
Creates a monitoring schedule to monitor an Amazon SageMaker Endpoint. If constraints and statistics are provided, or if they are able to be retrieved from a previous baselining job associated with this monitor, those will be used. If constraints and statistics cannot be automatically retrieved, baseline_inputs will be required in order to kick off a baselining job.
DefaultModelMonitor$create_monitoring_schedule( endpoint_input, record_preprocessor_script = NULL, post_analytics_processor_script = NULL, output_s3_uri = NULL, constraints = NULL, statistics = NULL, monitor_schedule_name = NULL, schedule_cron_expression = NULL, enable_cloudwatch_metrics = TRUE )
endpoint_input
(str or sagemaker.model_monitor.EndpointInput): The endpoint to monitor. This can either be the endpoint name or an EndpointInput.
record_preprocessor_script
(str): The path to the record preprocessor script. This can be a local path or an S3 uri.
post_analytics_processor_script
(str): The path to the record post-analytics processor script. This can be a local path or an S3 uri.
output_s3_uri
(str): Desired S3 destination of the constraint_violations and statistics json files. Default: "s3://<default_session_bucket>/<job_name>/output"
constraints
(sagemaker.model_monitor.Constraints or str): If provided alongside statistics, these will be used for monitoring the endpoint. This can be a sagemaker.model_monitor.Constraints object or an s3_uri pointing to a constraints JSON file.
statistics
(sagemaker.model_monitor.Statistic or str): If provided alongside constraints, these will be used for monitoring the endpoint. This can be a sagemaker.model_monitor.Constraints object or an s3_uri pointing to a constraints JSON file.
monitor_schedule_name
(str): Schedule name. If not specified, the processor generates a default job name, based on the image name and current timestamp.
schedule_cron_expression
(str): The cron expression that dictates the frequency that this job run. See sagemaker.model_monitor.CronExpressionGenerator for valid expressions. Default: Daily.
enable_cloudwatch_metrics
(bool): Whether to publish cloudwatch metrics as part of the baselining or monitoring jobs.
update_monitoring_schedule()
Updates the existing monitoring schedule.
DefaultModelMonitor$update_monitoring_schedule( endpoint_input = NULL, record_preprocessor_script = NULL, post_analytics_processor_script = NULL, output_s3_uri = NULL, statistics = NULL, constraints = NULL, schedule_cron_expression = NULL, instance_count = NULL, instance_type = NULL, volume_size_in_gb = NULL, volume_kms_key = NULL, output_kms_key = NULL, max_runtime_in_seconds = NULL, env = NULL, network_config = NULL, enable_cloudwatch_metrics = NULL, role = NULL )
endpoint_input
(str or sagemaker.model_monitor.EndpointInput): The endpoint to monitor. This can either be the endpoint name or an EndpointInput.
record_preprocessor_script
(str): The path to the record preprocessor script. This can be a local path or an S3 uri.
post_analytics_processor_script
(str): The path to the record post-analytics processor script. This can be a local path or an S3 uri.
output_s3_uri
(str): Desired S3 destination of the constraint_violations and statistics json files.
statistics
(sagemaker.model_monitor.Statistic or str): If provided alongside constraints, these will be used for monitoring the endpoint. This can be a sagemaker.model_monitor.Constraints object or an S3 uri pointing to a constraints JSON file.
constraints
(sagemaker.model_monitor.Constraints or str): If provided alongside statistics, these will be used for monitoring the endpoint. This can be a sagemaker.model_monitor.Constraints object or an S3 uri pointing to a constraints JSON file.
schedule_cron_expression
(str): The cron expression that dictates the frequency that this job runs at. See sagemaker.model_monitor.CronExpressionGenerator for valid expressions.
instance_count
(int): The number of instances to run the jobs with.
instance_type
(str): Type of EC2 instance to use for the job, for example, 'ml.m5.xlarge'.
volume_size_in_gb
(int): Size in GB of the EBS volume to use for storing data during processing (default: 30).
volume_kms_key
(str): A KMS key for the job's volume.
output_kms_key
(str): The KMS key id for the job's outputs.
max_runtime_in_seconds
(int): Timeout in seconds. After this amount of time, Amazon SageMaker terminates the job regardless of its current status. Default: 3600
env
(dict): Environment variables to be passed to the job.
network_config
(sagemaker.network.NetworkConfig): A NetworkConfig object that configures network isolation, encryption of inter-container traffic, security group IDs, and subnets.
enable_cloudwatch_metrics
(bool): Whether to publish cloudwatch metrics as part of the baselining or monitoring jobs.
role
(str): An AWS IAM role name or ARN. The Amazon SageMaker jobs use this role.
delete_monitoring_schedule()
Deletes the monitoring schedule and its job definition.
DefaultModelMonitor$delete_monitoring_schedule()
run_baseline()
'run_baseline()' is only allowed for ModelMonitor objects. Please use suggest_baseline for DefaultModelMonitor objects, instead.
DefaultModelMonitor$run_baseline()
attach()
Sets this object's schedule name to point to the Amazon Sagemaker Monitoring Schedule name provided. This allows subsequent describe_schedule or list_executions calls to point to the given schedule.
DefaultModelMonitor$attach(monitor_schedule_name, sagemaker_session = NULL)
monitor_schedule_name
(str): The name of the schedule to attach to.
sagemaker_session
(sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, one is created using the default AWS configuration chain.
latest_monitoring_statistics()
Returns the sagemaker.model_monitor.Statistics generated by the latest monitoring execution.
DefaultModelMonitor$latest_monitoring_statistics()
sagemaker.model_monitoring.Statistics: The Statistics object representing the file generated by the latest monitoring execution.
latest_monitoring_constraint_violations()
Returns the sagemaker.model_monitor.ConstraintViolations generated by the latest monitoring execution.
DefaultModelMonitor$latest_monitoring_constraint_violations()
sagemaker.model_monitoring.ConstraintViolations: The ConstraintViolations object representing the file generated by the latest monitoring execution.
clone()
The objects of this class are cloneable with this method.
DefaultModelMonitor$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.