CheckJobConfig | R Documentation |
Check job config for QualityCheckStep and ClarifyCheckStep
new()
Constructs a CheckJobConfig instance.
CheckJobConfig$new( role, instance_count = 1, instance_type = "ml.m5.xlarge", volume_size_in_gb = 30, volume_kms_key = NULL, output_kms_key = NULL, max_runtime_in_seconds = NULL, base_job_name = NULL, sagemaker_session = NULL, env = NULL, tags = NULL, network_config = NULL )
role
(str): An AWS IAM role. The Amazon SageMaker jobs use this role.
instance_count
(int): The number of instances to run the jobs with (default: 1).
instance_type
(str): Type of EC2 instance to use for the job (default: 'ml.m5.xlarge').
volume_size_in_gb
(int): Size in GB of the EBS volume to use for storing data during processing (default: 30).
volume_kms_key
(str): A KMS key for the processing volume (default: None).
output_kms_key
(str): The KMS key id for the job's outputs (default: None).
max_runtime_in_seconds
(int): Timeout in seconds. After this amount of time, Amazon SageMaker terminates the job regardless of its current status. Default: 3600 if not specified
base_job_name
(str): Prefix for the job name. If not specified, a default name is generated based on the training image name and current timestamp (default: None).
sagemaker_session
(sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed (default: None). If not specified, one is created using the default AWS configuration chain.
env
(dict): Environment variables to be passed to the job (default: None).
tags
([dict]): List of tags to be passed to the job (default: None).
network_config
(sagemaker.network.NetworkConfig): A NetworkConfig object that configures network isolation, encryption of inter-container traffic, security group IDs, and subnets (default: None).
.generate_model_monitor()
Generates a ModelMonitor object Generates a ModelMonitor object with required config attributes for QualityCheckStep and ClarifyCheckStep
CheckJobConfig$.generate_model_monitor(mm_type)
mm_type
(str): The subclass type of ModelMonitor object. A valid mm_type should be one of the following: "DefaultModelMonitor", "ModelQualityMonitor", "ModelBiasMonitor", "ModelExplainabilityMonitor"
sagemaker.model_monitor.ModelMonitor or None if the mm_type is not valid
format()
Format class
CheckJobConfig$format()
clone()
The objects of this class are cloneable with this method.
CheckJobConfig$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.