EstimatorTransformer | R Documentation |
Creates a Transformer step collection for workflow.
sagemaker.workflow::StepCollection
-> EstimatorTransformer
new()
Construct steps required for a Transformer step collection: An estimator-centric step collection. It models what happens in workflows when invoking the 'transform()' method on an estimator instance: First, if custom model artifacts are required, a '_RepackModelStep' is included. Second, a 'CreateModelStep' with the model data passed in from a training step or other training job output. Finally, a 'TransformerStep'. If repacking the model artifacts is not necessary, only the CreateModelStep and TransformerStep are in the step collection.
EstimatorTransformer$new( name, estimator, model_data, model_inputs, instance_count, instance_type, transform_inputs, description = NULL, display_name = NULL, image_uri = NULL, predictor_cls = NULL, env = NULL, strategy = NULL, assemble_with = NULL, output_path = NULL, output_kms_key = NULL, accept = NULL, max_concurrent_transforms = NULL, max_payload = NULL, tags = NULL, volume_kms_key = NULL, depends_on = NULL, repack_model_step_retry_policies = NULL, model_step_retry_policies = NULL, transform_step_retry_policies = NULL, ... )
name
(str): The name of the Transform Step.
estimator
: The estimator instance.
model_data
(str): The S3 location of a SageMaker model data “.tar.gz“ file (default: None).
model_inputs
(CreateModelInput): A 'sagemaker.inputs.CreateModelInput' instance. Defaults to 'None'.
instance_count
(int): The number of EC2 instances to use.
instance_type
(str): The type of EC2 instance to use.
transform_inputs
(TransformInput): A 'sagemaker.inputs.TransformInput' instance.
description
(str): The description of the step.
display_name
(str): The display name of the step.
image_uri
(str): A Docker image URI.
predictor_cls
(callable[string, :Session]): A function to call to create a predictor (default: None). If not None, “deploy“ will return the result of invoking this function on the created endpoint name.
env
(dict): The Environment variables to be set for use during the transform job (default: None).
strategy
(str): The strategy used to decide how to batch records in a single request (default: None). Valid values: 'MultiRecord' and 'SingleRecord'.
assemble_with
(str): How the output is assembled (default: None). Valid values: 'Line' or 'None'.
output_path
(str): The S3 location for saving the transform result. If not specified, results are stored to a default bucket.
output_kms_key
(str): Optional. A KMS key ID for encrypting the transform output (default: None).
accept
(str): The accept header passed by the client to the inference endpoint. If it is supported by the endpoint, it will be the format of the batch transform output.
max_concurrent_transforms
(int): The maximum number of HTTP requests to be made to each individual transform container at one time.
max_payload
(int): Maximum size of the payload in a single HTTP
tags
(list[dict]): List of tags for labeling a training job. For more, see https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.
volume_kms_key
(str): Optional. KMS key ID for encrypting the volume attached to the ML compute instance (default: None).
depends_on
(List[str] or List[Step]): The list of step names or step instances the first step in the collection depends on
repack_model_step_retry_policies
(List[RetryPolicy]): The list of retry policies for the repack model step
model_step_retry_policies
(List[RetryPolicy]): The list of retry policies for model step
transform_step_retry_policies
(List[RetryPolicy]): The list of retry policies for transform step
...
: pass onto model class.
clone()
The objects of this class are cloneable with this method.
EstimatorTransformer$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.