get_mi_mean: Get multiple imputation mean statistics

Description Usage Arguments Examples

Description

Get multiple imputation mean statistics

Usage

1
2
get_mi_mean(.data, stat_var, weight_var = NULL, ids = ".id",
  imps = ".imp", summary = TRUE, use_random = FALSE)

Arguments

.data

dataframe that could be converted to the mids object to perform calculations on the multiple imputations data frame.

stat_var

variable to apply statistics

weight_var

variable for weighting. NULL by default.

ids, imps

names of the columns wit the observation-specific ID and number of imputation.

summary

return a summary of the pooled analysis.

use_random

harmonise imputation of the unequal size randomly. By default if FALSE, therefore, to equalise sizes of the imputed samples, simplu n-first observations is used.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
library(dplyr)
dep <- "price"            # Dependent variable
indep <- c("mpg", "headroom", "trunk",
           "weight", "length", "turn",
           "displacement", "gear_ratio",
           "foreign")     # independent variables
weight <- "weight"        # weight variable
extrar <- "displacement"  # any extra variable to bring from period 0 data
bt_groups <- c("psu")     # Grouping variable for bootsrapping.
n_nearest <- 5    # numebr of the nearest observations to drow a random match
set.seed(11344)
imputation <-
  lassopmm(
    source = p_0_exmple,
    target = p_1_exmple,
    dep_var = dep,
    indep_var = indep,
    weight_var = weight,
    strata_vars = bt_groups,
    extra_var = extrar,
    n_boot = 5, # Numebr of bootstrap iterations
    n_near = 1)

# Getting results of the averages
get_mi_mean(imputation, stat_var = "price_source", use_random = F)

# Same by with weights in means
get_mi_mean(imputation, stat_var = "price_source", weight_var = "weight")

EBukin/lassopmm documentation built on June 12, 2019, 9:51 a.m.