ProbitLasso: Title Lasso and Adaptive Lasso Probit Regression

Description Usage Arguments Value Examples

View source: R/HeckmanSelect.R

Description

Title Lasso and Adaptive Lasso Probit Regression

Usage

1
2
3
4
5
6
7
8
9
ProbitLasso(
  formula,
  data = sys.frame(sys.parent()),
  lambda = NULL,
  allowParallel = FALSE,
  penalty = c("LASSO", "ALASSO"),
  crit = c("bic", "aic", "gcv"),
  ...
)

Arguments

formula

model formula for probit regression. This is the outcome model when the missing data is deleted

data

data matrix containing the outcome and covariates for probit regression

lambda

shrinkage parameter, both scalar and vector are acceptable When lambda=NULL, the internal vector of Lambda is used

allowParallel

If true, the "doParallel" package is invoked

penalty

can be ALASSO (for adaptive lasso) or LASSO (for Lasso) penalty

crit

can be BIC, AIC or GCV, default is BIC

...

Value

class ProbitLasso containing penalized probit coefficients similar to the GLMNET package results. Linear predictor and fitted values are returned

Examples

1
ProbitLasso(formula, data=data, allowParallel = TRUE, penalty="ALASSO", crit="bic")

EOgundimu300/HeckmanSelect documentation built on Feb. 5, 2022, 2:48 a.m.