| ConvLayer | R Documentation | 
Create a sequence of convolutional ('ni' to 'nf'), ReLU (if 'use_activ') and 'norm_type' layers.
ConvLayer(
  ni,
  nf,
  ks = 3,
  stride = 1,
  padding = NULL,
  bias = NULL,
  ndim = 2,
  norm_type = 1,
  bn_1st = TRUE,
  act_cls = nn()$ReLU,
  transpose = FALSE,
  init = "auto",
  xtra = NULL,
  bias_std = 0.01,
  dilation = 1,
  groups = 1,
  padding_mode = "zeros"
)
| ni | number of inputs | 
| nf | outputs/ number of features | 
| ks | kernel size | 
| stride | stride | 
| padding | padding | 
| bias | bias | 
| ndim | dimension number | 
| norm_type | normalization type | 
| bn_1st | batch normalization 1st | 
| act_cls | activation | 
| transpose | transpose | 
| init | initializer | 
| xtra | xtra | 
| bias_std | bias standard deviation | 
| dilation | specify the dilation rate to use for dilated convolution | 
| groups | groups size | 
| padding_mode | padding mode, e.g 'zeros' | 
None
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.