| UnetBlock | R Documentation | 
A quasi-UNet block, using 'PixelShuffle_ICNR upsampling'.
UnetBlock(
  up_in_c,
  x_in_c,
  hook,
  final_div = TRUE,
  blur = FALSE,
  act_cls = nn()$ReLU,
  self_attention = FALSE,
  init = nn()$init$kaiming_normal_,
  norm_type = NULL,
  ks = 3,
  stride = 1,
  padding = NULL,
  bias = NULL,
  ndim = 2,
  bn_1st = TRUE,
  transpose = FALSE,
  xtra = NULL,
  bias_std = 0.01,
  dilation = 1,
  groups = 1,
  padding_mode = "zeros"
)
| up_in_c | up_in_c parameter | 
| x_in_c | x_in_c parameter | 
| hook | The hook is set to this intermediate layer to store the output needed for this block. | 
| final_div | final div | 
| blur | blur is used to avoid checkerboard artifacts at each layer. | 
| act_cls | activation | 
| self_attention | self_attention determines if we use a self-attention layer | 
| init | initializer | 
| norm_type | normalization type | 
| ks | kernel size | 
| stride | stride | 
| padding | padding mode | 
| bias | bias | 
| ndim | number of dimensions | 
| bn_1st | batch normalization 1st | 
| transpose | transpose | 
| xtra | xtra | 
| bias_std | bias standard deviation | 
| dilation | dilation | 
| groups | groups | 
| padding_mode | The mode of padding | 
None
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.