SpecACF: Estimate Power Spectra via the Autocovariance Function With...

View source: R/SpecACF.R

SpecACFR Documentation

Estimate Power Spectra via the Autocovariance Function With Optional Slepian Tapers

Description

Estimates the power spectrum from a single time series, or the mean spectrum of a set of timeseries stored as the columns of a matrix. Timeseries can contain (some) gaps coded as NA values. Gaps results in additional estimation error so that the power estimates are no longer chi-square distributed and can contain additional additive error, to the extent that power at some frequencies can be negative. We do not have a full understanding of this estimation uncertainty, but simulation testing indicates that the estimates are unbiased such that smoothing across frequencies to remove negative estimates results in an unbiased power spectrum.

Usage

SpecACF(
  x,
  deltat = NULL,
  bin.width = NULL,
  k = 3,
  nw = 2,
  demean = TRUE,
  detrend = TRUE,
  TrimNA = TRUE,
  pos.f.only = TRUE,
  return.working = FALSE
)

Arguments

x

a vector or matrix of binned values, possibly with gaps

deltat, bin.width

the time-step of the timeseries, equivalently the width of the bins in a binned timeseries, set only one

k

a positive integer, the number of tapers, often 2*nw.

nw

a positive double precision number, the time-bandwidth parameter.

demean

remove the mean from each record (column) in x, defaults to TRUE. If detrend is TRUE, mean will be removed during detrending regardless of the value of demean

detrend

remove the mean and any linear trend from each record (column) in x, defaults to FALSE

pos.f.only

return only positive frequencies, defaults to TRUE If TRUE, freq == 0, and frequencies higher than 1/(2*bin.width) which correspond to the negative frequencies are removed

Value

a spec object (list)

Author(s)

Torben Kunz and Andrew Dolman <andrew.dolman@awi.de>

See Also

Other functions to estimate power spectra: SpecMTM()

Examples

set.seed(20230312)

# Comparison with SpecMTM

tsM <- replicate(2, SimPLS(1e03, 1, 0.1))
spMk3 <- SpecACF(tsM, bin.width = 1, k = 3, nw = 2)
spMk1 <- SpecACF(tsM, bin.width = 1, k = 1, nw = 0)

spMTMa <- SpecMTM(tsM[,1], deltat = 1)
spMTMb <- SpecMTM(tsM[,2], deltat = 1)
spMTM <- spMTMa
spMTM$spec <- (spMTMa$spec + spMTMb$spec)/2

gg_spec(list(
  `ACF k=1` = spMk1,
  `ACF k=3` = spMk3,
  `MTM k=3` = spMTM
), alpha.line = 0.75) +
  ggplot2::facet_wrap(~spec_id)

## No gaps

ts1 <- SimPLS(1000, 1, 0.1)

sp_ACF1 <- SpecACF(ts1, 1, k = 1)
sp_MTM7 <- SpecMTM(ts1, nw = 4, k = 7, deltat = 1)
sp_ACF7 <- SpecACF(ts1, 1, k = 7, nw = 4)

gg_spec(list(
  `ACF k=1` = sp_ACF1, `ACF k=7` = sp_ACF7, `MTM k=7` = sp_MTM7
))

# With Gaps

gaps <- (arima.sim(list(ar = 0.5), n = length(ts1))) > 1
table(gaps)
ts1_g <- ts1
ts1_g[gaps] <- NA

sp_ACF1_g <- SpecACF(ts1_g, 1)
sp_ACFMTM1_g <- SpecACF(ts1_g, bin.width = 1, nw = 4, k = 7)

gg_spec(list(
  ACF_g = sp_ACF1_g,
  ACF_g_smoothed = FilterSpecLog(sp_ACF1_g),
  ACF_g_tapered = sp_ACFMTM1_g
), conf = FALSE) +
  ggplot2::geom_abline(intercept = log10(0.1), slope = -1, lty = 2)



## AR4
arc_spring <- c(2.7607, -3.8106, 2.6535, -0.9238)

tsAR4 <- arima.sim(list(ar = arc_spring), n = 1e03) + rnorm(1e03, 0, 10)
plot(tsAR4)
spAR4_ACF <- SpecACF(tsAR4, 1)
spAR4_MTACF <- SpecACF(as.numeric(tsAR4), 1, k = 15, nw = 8)

gg_spec(list(#'
  `ACF k=1` = spAR4_ACF,
  `ACF k=15` = spAR4_MTACF)
)

## Add gaps to timeseries

gaps <- (arima.sim(list(ar = 0.5), n = length(tsAR4))) > 2
table(gaps)
tsAR4_g <- tsAR4
tsAR4_g[gaps] <- NA

plot(tsAR4, col = "green")
lines(tsAR4_g, col = "blue")

table(tsAR4_g > 0, useNA = "always")

spAR4_ACF_g <- SpecACF(as.numeric(tsAR4_g), 1)
spAR4_MTACF_g <- SpecACF(as.numeric(tsAR4_g), 1, nw = 8, k = 15)

table(spAR4_ACF_g$spec < 0)
table(spAR4_MTACF_g$spec < 0)

gg_spec(list(
  `ACF gaps k=1` = spAR4_ACF_g,
  `ACF gaps k = 15` = spAR4_MTACF_g,
  `ACF full k = 15` = spAR4_MTACF
)
)

EarthSystemDiagnostics/paleospec documentation built on Oct. 28, 2024, 7:31 a.m.