SpecACF | R Documentation |
Estimates the power spectrum from a single time series, or the mean spectrum of a set of timeseries stored as the columns of a matrix. Timeseries can contain (some) gaps coded as NA values. Gaps results in additional estimation error so that the power estimates are no longer chi-square distributed and can contain additional additive error, to the extent that power at some frequencies can be negative. We do not have a full understanding of this estimation uncertainty, but simulation testing indicates that the estimates are unbiased such that smoothing across frequencies to remove negative estimates results in an unbiased power spectrum.
SpecACF(
x,
deltat = NULL,
bin.width = NULL,
k = 3,
nw = 2,
demean = TRUE,
detrend = TRUE,
TrimNA = TRUE,
pos.f.only = TRUE,
return.working = FALSE
)
x |
a vector or matrix of binned values, possibly with gaps |
deltat , bin.width |
the time-step of the timeseries, equivalently the width of the bins in a binned timeseries, set only one |
k |
a positive integer, the number of tapers, often 2*nw. |
nw |
a positive double precision number, the time-bandwidth parameter. |
demean |
remove the mean from each record (column) in x, defaults to TRUE. If detrend is TRUE, mean will be removed during detrending regardless of the value of demean |
detrend |
remove the mean and any linear trend from each record (column) in x, defaults to FALSE |
pos.f.only |
return only positive frequencies, defaults to TRUE If TRUE, freq == 0, and frequencies higher than 1/(2*bin.width) which correspond to the negative frequencies are removed |
a spec object (list)
Torben Kunz and Andrew Dolman <andrew.dolman@awi.de>
Other functions to estimate power spectra:
SpecMTM()
set.seed(20230312)
# Comparison with SpecMTM
tsM <- replicate(2, SimPLS(1e03, 1, 0.1))
spMk3 <- SpecACF(tsM, bin.width = 1, k = 3, nw = 2)
spMk1 <- SpecACF(tsM, bin.width = 1, k = 1, nw = 0)
spMTMa <- SpecMTM(tsM[,1], deltat = 1)
spMTMb <- SpecMTM(tsM[,2], deltat = 1)
spMTM <- spMTMa
spMTM$spec <- (spMTMa$spec + spMTMb$spec)/2
gg_spec(list(
`ACF k=1` = spMk1,
`ACF k=3` = spMk3,
`MTM k=3` = spMTM
), alpha.line = 0.75) +
ggplot2::facet_wrap(~spec_id)
## No gaps
ts1 <- SimPLS(1000, 1, 0.1)
sp_ACF1 <- SpecACF(ts1, 1, k = 1)
sp_MTM7 <- SpecMTM(ts1, nw = 4, k = 7, deltat = 1)
sp_ACF7 <- SpecACF(ts1, 1, k = 7, nw = 4)
gg_spec(list(
`ACF k=1` = sp_ACF1, `ACF k=7` = sp_ACF7, `MTM k=7` = sp_MTM7
))
# With Gaps
gaps <- (arima.sim(list(ar = 0.5), n = length(ts1))) > 1
table(gaps)
ts1_g <- ts1
ts1_g[gaps] <- NA
sp_ACF1_g <- SpecACF(ts1_g, 1)
sp_ACFMTM1_g <- SpecACF(ts1_g, bin.width = 1, nw = 4, k = 7)
gg_spec(list(
ACF_g = sp_ACF1_g,
ACF_g_smoothed = FilterSpecLog(sp_ACF1_g),
ACF_g_tapered = sp_ACFMTM1_g
), conf = FALSE) +
ggplot2::geom_abline(intercept = log10(0.1), slope = -1, lty = 2)
## AR4
arc_spring <- c(2.7607, -3.8106, 2.6535, -0.9238)
tsAR4 <- arima.sim(list(ar = arc_spring), n = 1e03) + rnorm(1e03, 0, 10)
plot(tsAR4)
spAR4_ACF <- SpecACF(tsAR4, 1)
spAR4_MTACF <- SpecACF(as.numeric(tsAR4), 1, k = 15, nw = 8)
gg_spec(list(#'
`ACF k=1` = spAR4_ACF,
`ACF k=15` = spAR4_MTACF)
)
## Add gaps to timeseries
gaps <- (arima.sim(list(ar = 0.5), n = length(tsAR4))) > 2
table(gaps)
tsAR4_g <- tsAR4
tsAR4_g[gaps] <- NA
plot(tsAR4, col = "green")
lines(tsAR4_g, col = "blue")
table(tsAR4_g > 0, useNA = "always")
spAR4_ACF_g <- SpecACF(as.numeric(tsAR4_g), 1)
spAR4_MTACF_g <- SpecACF(as.numeric(tsAR4_g), 1, nw = 8, k = 15)
table(spAR4_ACF_g$spec < 0)
table(spAR4_MTACF_g$spec < 0)
gg_spec(list(
`ACF gaps k=1` = spAR4_ACF_g,
`ACF gaps k = 15` = spAR4_MTACF_g,
`ACF full k = 15` = spAR4_MTACF
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.