#' variableContribution
#'
#' Tests of the environmental variable importance for a given species based on
#' Maxent algorithm.
#'
#' @importFrom dismo maxent
#' @importFrom raster stack
#' @param occ table containing columns with the species name, longitude, and
#' latitude.
#' @param path character, the path to the folder containing the variables.
#' @param corel table, output of the function **variableCorrelation**.
#' @param original_format character, indicates the format of the layers.
#' @return This function return a table informing the contribution of each
#' variable in a maxent model.
#' @export
variableContribution <- function(occ, path, corel, original_format = ".asc"){
#select lon and lat columns and standardise names for maxent
occ2 <- occ[,c("decimalLongitude","decimalLatitude")]
names(occ2) <- c("lon","lat")
#load variables
oldwd <- getwd()
setwd(path)
vars <- stack(list.files(pattern = original_format))
setwd(oldwd)
#select variables that are not more correlated than 0.7
predictors <- vars[[which(names(vars) %in% corel$Variables)]]
#run maxent model
maxent()
me <- maxent(predictors, occ2)
#obtain and organise variable importance
var_imp <- plot(me)
var_imp2 <- sort(var_imp, decreasing = TRUE)
var_imp3 <- data.frame(var=names(var_imp2),contribution=var_imp2)
return(var_imp3)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.