#' @title RNN.Triangle.NoAR
#' @description It generates the triangle predicted by an individual RNN. The autorregressive component of the MackNet model is not taken into consideration.
#' @param CumulativeScaled.T Cumulative payments triangle divided between the exposure measure.
#' @param PI_Ratio Observed cumulative payments between incurred cost by development year.
#' @param model Keras object containing the structure and optimization algorithm of the RNN.
#' @return Triangle predicted by an individual RNN. The autorregressive component of the MackNet model is not taken into consideration.
#' @import keras
#' @import abind
#' @export
#'
RNN.Triangle.NoAR=function(CumulativeScaled.T,PI_Ratio,model){
dimension=dim(CumulativeScaled.T)[1]
if (CumulativeScaled.T[dimension,1]>max(CumulativeScaled.T[1:(dimension-1),1])) {Reference=1} else {Reference=0}
for (i in 2:dimension){
for (j in (dimension-i+2):dimension){
if (j==dimension){Pred=CumulativeScaled.T[i,]}else{Pred=c(rep(Reference,dimension-j),CumulativeScaled.T[i,1:j])}
if (j==dimension){Pred2=PI_Ratio[i,]}else{Pred2=c(rep(0,dimension-j),PI_Ratio[i,1:j])}
Pred=Pred[2:(dimension-1)];Pred2=Pred2[2:(dimension-1)]
Pred3=c(rep(0,dimension-i),seq(from=1/dimension,to=i/dimension,length.out = i))[2:(dimension-1)]
Pred4=c(rep(0,dimension-j),seq(from=1/dimension,to=j/dimension,length.out = j))[2:(dimension-1)]
# Pred.X=array(c(Pred2, Pred3, Pred4), dim=c(1,length(Pred2),3))
Pred.X=array(c(Pred2, Pred4), dim=c(1,length(Pred2),2))
CumulativeScaled.T[i,j]=(model %>% predict(Pred.X))
}
}
return(CumulativeScaled.T)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.