#' @title
#'
#' @description imp_plot_bw()
#'
#' @param
#'
#' @param
#'
#' @return
#'
#' @note
#'
#' @author Antonio J Berlanga-Taylor, George Adams, Deborah Schneider-Luftman <\url{https://github.com/EpiCompBio/bigimp}>
#'
#' @seealso \code{\link{functioname}},
#' \code{\link[packagename]{functioname}}.
#'
#' @examples
#'
#' \dontrun{
#'
#'
#'
#' }
#'
#' @export
#'
# @importFrom pack func1
#'
imp_plot_bw <- function(param1 = some_default,
...
) {
# Use this instead or library or require inside functions:
if (!requireNamespace('some_pkg', quietly = TRUE)) {
stop('Package some_pkg needed for this function to work. Please install it.',
call. = FALSE)
}
# this is from stats_utils/stats_utils/run_mice_impute.R
# lines 940
# Further exploratory plots
# # TO DO: save legends
# Diagnostics for plausible values. compare imputed vs observed values
# Assuming data are missing completely at random (MCAR)
# imputations should have the same distribution as the observed data.
# Distributions may differ because missing data are
# missing at random (MAR) or non-random (MNAR)
# Very large discrepancies should not exist though, check with:
svg(sprintf('bwplots_imputation_%s.svg', output_name))
bwplot(imp_merged,
subset = (.imp == 0 | # get the original data
.imp == 1 | .imp == 2 | .imp == 3 | .imp == 4 | .imp == 5 |
.imp == 6 | .imp == 7 | .imp == 8 | .imp == 9 | .imp == 10),
# col = mdc(1:2), #col = mdc(1:2), pch=20, cex=1.5,
pch = 1, cex = 0.7,
strip = strip.custom(par.strip.text = list(cex = 0.7))
)
dev.off()
return(something_I_need)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.