title: "MIXCLUSTERING_vignette"

output: rmarkdown::html_vignette

vignette: >

%\VignetteIndexEntry{vignette}

%\VignetteEngine{knitr::rmarkdown}

%\VignetteEncoding{UTF-8}

title: "Mixed Data Clustering using Mixture Model documentation" author: "Nour Dass HAMMADI & Farida BENCHALLAL" date: "r Sys.Date()" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{MIXCLUSTERING_Vignette} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8}


Clustering Method with mixture model using EM algorithm for mixed data ( categorical features and continious features), the package has two functions: MclustBis() for clustering and plotting for displaying results

library(dplyr)
library(tidyverse)
library(gtools)
library(FactoMineR)
library(bayess)
library(mvtnorm)
library(devtools)
library(MIXCLUSTERING)
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

préparation de données

x <- mtcars 
x$vs = as.factor(x$vs) 
x$am = as.factor(x$am) 
x$gear = as.factor(x$gear) 

MIXCLUSTERING

mix_clust_kmeans <- My_Mix_clustering(x, 3, 14, 'kmeans')
mix_clust_random <- My_Mix_clustering(x, 3, 14, 'random')

Graphes MIXCLUSTERING

affiche_graphe(mix_clust_kmeans)
affiche_graphe(mix_clust_random)


FaridaBenchalal/MIXCLUSTERING documentation built on Dec. 17, 2021, 8:23 p.m.