library(rnoaa)
library(tidyverse)
library(dataRetrieval)
library(lubridate)
library(caret)
buoy_port_chicago <- rnoaa::buoy(dataset = 'stdmet', buoyid = 'PCOC1')
bpc <- buoy_port_chicago$data %>%
select(time, air_temperature, sea_surface_temperature) %>%
mutate(date = as_date(ymd_hms(time)), sea_tempF = sea_surface_temperature * 9/5 + 32,
air_tempF = air_temperature * 9/5 + 32) %>%
group_by(date) %>%
summarise(sea_tempF = mean(sea_tempF, na.rm = TRUE),
air_tempF = mean(air_tempF, na.rm = TRUE)) %>%
ungroup() %>%
mutate(year = year(date), month = month(date), day_of_year = yday(date))
ggplot(bpc, aes(x = air_tempF, y = sea_tempF, color = day_of_year)) +
geom_point() +
# geom_smooth(method = 'lm') +
geom_hline(yintercept = 64.4)
bpc_model <- lm(sea_tempF ~ air_tempF + day_of_year, bpc)
summary(bpc_model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.