View source: R/shift_function_calc.R
shiftdhd_pbci | R Documentation |
shiftdhd_pbci
returns a shift function for two independent groups or
multiple shift functions for pairs of independent groups. It uses the
Harrell-Davis quantile estimator in conjunction with a percentile
bootstrap approach.
Unlike shiftdhd
:
The confidence intervals are calculated using a percentile bootstrap of the quantiles, instead of a percentile bootstrap of the standard error of the difference of the quantiles.
The quantiles can be specified and are not limited to the deciles.
Tied values are allowed.
The confidence intervals are not corrected for multiple comparisons, the p values are. Examples of quantile sequences, from sparse to dense:
q = c(.25,.5,.75)
q = c(.1,.25,.5,.75,.9)
q = seq(.1, .9, .1)
q = seq(.05, .95, .05)
shiftdhd_pbci( data = df, formula = obs ~ gr, q = seq(0.1, 0.9, 0.1), nboot = 1000, alpha = 0.05, todo = NULL, doall = FALSE )
data |
A data frame in long format. One column is a factor describing the groups;
another column contains the values/observations for each group. A properly formatted data
frame can be created using |
formula |
A formula with format response variable ∼ predictor variable, where ~ (tilde) means "is modeled as a function of". |
q |
Quantiles to estimate - default = deciles 0.1:0.1:.9. |
nboot |
Number of bootstrap samples - default = 1000 |
alpha |
Expected long-run type I error rate - default = 0.05 |
todo |
A list of comparisons to perform - default = NULL. |
doall |
Set to TRUE to compute all comparisons - default = FALSE. Not
executed if a |
A list of data frames, one data frame per comparison. Each data frame has one row per decile. The columns are:
Column 1 = quantiles
Column 2 = quantiles for group 1
Column 3 = quantiles for group 2
Column 4 = quantile differences (column 3 - column 4)
Column 5 = lower bounds of the confidence intervals
Column 6 = upper bounds of the confidence intervals
Column 7 = critical p_values based on Hochberg's method
Column 8 = p_values
Adaptation of Rand Wilcox's 'Dqcomhd', 'bootdpci' & 'rmmcppb' R functions (http://dornsife.usc.edu/labs/rwilcox/software/). From Rallfun-v32.txt - see https://github.com/nicebread/WRS/.
Wilcox, R.R. & Erceg-Hurn, D.M. (2012) Comparing two dependent groups via quantiles. J Appl Stat, 39, 2655-2664.
hd
shiftdhd
for the pbse method for dependent groups
shifthd_pbci
for independent groups
set.seed(21) # generate data n <- 100 # sample size C1 <- rnorm(100) df2 <- tibble(cond = factor(c(rep("C1",n),rep("C2",n),rep("C3",n))), obs = c(C1+6, C1+rnorm(n)+4, C1+rnorm(n))) # make tibble out <- shiftdhd_pbci(df, obs ~ cond) # use the default parameters out <- shiftdhd_pbci(df, obs ~ cond, nboot = 500) # specify the number of bootstrap samples out <- shiftdhd_pbci(df, obs ~ cond, todo = list(c("C1","C2"),c("C3","C1"))) # specify list of comparisons out <- shiftdhd_pbci(df, obs ~ cond, q = c(.1,.25,.5,.75,.9)) # specify the quantiles out <- shiftdhd_pbci(df, doall = TRUE) # compute all comparisons
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.