dqf.outlier: DQF computation for data frame

Description Usage Arguments Examples

View source: R/dqfoutlier.R

Description

Computes the averaged DQFs for a given data set

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
dqf.outlier(
  data = NULL,
  gram.mat = NULL,
  g.scale = 2,
  angle = c(30, 45, 60),
  kernel = "linear",
  p1 = 1,
  p2 = 0,
  n.splits = 100,
  subsample = 50,
  z.scale = TRUE,
  k.w = 3,
  adaptive = TRUE,
  G = "norm"
)

Arguments

data

data frame or matrix

gram.mat

alternatively, the precompute Gram matrix

g.scale

scales the base distribution G

angle

3-vector of angles (must be between 0 and 90)

kernel

of form "linear", "rbf" or "poly", or a user defined function

p1

first parameter for kernel (if required)

p2

second parameter for kernel (if required)

n.splits

integer number of base points to compute DQF at

subsample

integer number of random pairs to base averaged DQF on

z.scale

logical to z-scale data prior to analysis

k.w

integer number of points to windsorize at each extreme of data

adaptive

logical to use adaptive DQF (windsorized st dev)

G

base distribution: "norm" or "unif"

angles

of cone from midline, must live between 0 and 90

Examples

1
fit.dqf <- dqf.outlier(iris[51:102,1:4], g.scale=6)

GabeChandler/dqfAnomaly documentation built on Jan. 25, 2022, 12:33 a.m.