Description Usage Arguments Value Examples
The msc.pca allows you to perform Principle Component Analysis to summarize MSCs variation in all samples or in a subset of samples.
1 |
clustmatrix |
a cluster matrix |
samples |
a vector containing the names of the samples. This can include all samples or it can be a subset. |
groups |
a vector specifying to which group (e.g. species) the samples belong to. |
n |
number of clusters to select with highest contribution to PCA. |
labels |
a logical parameter indicating whether to use labels on the PCA plot or not. Default is set to true. |
title |
the title of the graph |
plot |
a PCA plot. |
eigenvalues |
a barplot showing percentage of explained variances. |
clustnames |
list of cluster names with highest contribution to PCA. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | data(matrices)
data(exData)
### run function with all samples
res.pca <- lapply(matrices, function(x) msc.pca(x, samples = exData$samples,
groups = exData$species, n=30, labels=FALSE, title=NULL))
res.pca$id93$eigenvalues
res.pca$id93$plot
### use clusters with highest contribution to visualize in a heatmap
msc.heatmap(matrices[["id93"]][res.pca$id93$clustnames,], samples = exData$samples,
groups = exData$species)
### run function with a subset of samples
### you will be asked to confirm
table(exData$species)
hybrid <- which(exData$species=="hybrid")
# pca.subset <- msc.pca(clustmatrix = matrices[["id97"]],
# samples = exData$samples[hybrid],
# groups = exData$species[hybrid], labels = TRUE,
# title = "PCA only with hybrids")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.