Description Usage Arguments Value Examples
The msc.richness function counts how many Minicircle Sequence Clusters (MSC) are present per sample across different percent identities.
1 | msc.richness(clustmatrices, samples, groups)
|
clustmatrices |
a list of cluster matrices. |
samples |
a vector containing the names of the samples. This can include all samples or it can be a subset. |
groups |
a vector, of equal length as samples, specifying to which group (e.g. species) the samples belong to. |
table |
a table containing the number of MSC per sample across different percent identities. |
plot |
a boxplot visualizing previous results. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | require(ggplot2)
data(matrices)
data(exData)
#### run function
richness <- msc.richness(matrices, samples = exData$samples, groups = exData$species)
apply(richness$table[which(richness$table$group=="L. peruviana"),-(1:2)], 2, mean)
apply(richness$table[which(richness$table$group=="L. braziliensis"),-(1:2)], 2, mean)
apply(richness$table[which(richness$table$group=="hybrid"),-(1:2)], 2, mean)
#### visualize results
barplot(richness$table[,"id93"], names.arg = richness$table[,1],
las=2, cex.names=0.4, main="N of MSC at id 93")
#### adjust plot
richness$plot + ggtitle("MSC richness across % id") +
theme(axis.text.x = element_text(angle=45, hjust=1))
### show results of subset
table(exData$species)
hybrid <- which(exData$species=="hybrid")
# richness.subset <- msc.richness(matrices, samples = exData$samples[hybrid],
# groups = exData$species[hybrid])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.