| mean_Nsd | R Documentation |
Function finds spectra that represent mean +/- n standard deiations
and adds column .name.
mean_Nsd(sp, n = 2, plus.minus = TRUE)
sp |
|
n |
Number of standard deviations, i.e. value of z-score. |
plus.minus |
Logical. If |
A hyperSpec object with spectra at mean(sp) \u00B1 n*sd(sp).
Vilmantas Gegzna
scale, outside_mean_pm_Nsd, mean_sd
Other spHelper functions for spectroscopy and hyperSpec:
IQR_outliers(),
binning(),
file,
gapDer(),
hy2mat(),
hyAdd_Label_wl(),
hyAdd_Labels_PAP_PD_2014(),
hyAdd_Labels_TD2009(),
hyAdd(),
hyDrop_NA(),
hyGet_palette(),
hyRm_palette(),
mad_outliers(),
median_Nmad(),
plot_hyPalette(),
prepare_PAP_RK_2014__MATLAB_failui(),
read.OOIBase32(),
read.OceanView.header(),
read.OceanView(),
read.sp.csv2(),
read3csv2hy(),
replace_spc(),
sd_outliers(),
spStat(),
sp_class_perform()
data(Spectra2)
Margins <- mean_Nsd(Spectra2)
Margins3 <- mean_Nsd(Spectra2, n = 3)
plotspc(Margins)
# Plot data and margins =======================================
Marg2 <- as.long.df(Margins, rownames = TRUE, na.rm = FALSE)
Marg3 <- as.long.df(Margins3, rownames = TRUE, na.rm = FALSE)
Spectra2$.name <- factor("Spectra")
qplotspc(Spectra2, spc.nmax = nrow(Spectra2),
mapping = aes(x = .wavelength, y = spc, group = .rownames, color = .name),
alpha = .25) + theme_light() +
geom_line(data = Marg2, aes(color = .name), lwd = 1) +
geom_line(data = Marg3, aes(color = .name), lwd = 1) +
scale_color_manual(" ", values = c("blue","orange2", "red")) +
scale_alpha_manual(" ", values = ".2", guide = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.