Description Usage Arguments Value See Also Examples
Vectorized (in σ) function of the MSE estimator in eq. (2.3) of Srihera & Stute (2011), and of the analogous estimator in the paragraph after eq. (6) in Eichner & Stute (2013).
| 1 | 
| sigma | Numeric vector (σ_1, …, σ_s) with s ≥ 1. | 
| Ai | Numeric vector expecting (x_0 - X_1, …, x_0 - X_n) / h, where (usually) x_0 is the point at which the density is to be estimated for the data X_1, …, X_n with h = n^{-1/5}. | 
| Bj | Numeric vector expecting (-J(1/n), …, -J(n/n)) in case
of the rank transformation method, but (\hat{θ} - X_1,
…, \hat{θ} - X_n) in case of the non-robust
Srihera-Stute-method. (Note that this the same as argument
 | 
| h | Numeric scalar, where (usually) h = n^{-1/5}. | 
| K | Kernel function with vectorized in- & output. | 
| fnx | f_n(x_0) =  | 
| ticker | Logical; determines if a 'ticker' documents the iteration
progress through  | 
A vector with corresponding MSE values for the values in
sigma.
For details see bias_AND_scaledvar.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | require(stats)
set.seed(2017);     n <- 100;     Xdata <- sort(rnorm(n))
x0 <- 1;      Sigma <- seq(0.01, 10, length = 11)
h <- n^(-1/5)
Ai <- (x0 - Xdata)/h
fnx0 <- mean(dnorm(Ai)) / h   # Parzen-Rosenblatt estimator at x0.
 # non-robust method:
theta.X <- mean(Xdata) - Xdata
kader:::mse_hat(sigma = Sigma, Ai = Ai, Bj = theta.X,
  h = h, K = dnorm, fnx = fnx0, ticker = TRUE)
 # rank transformation-based method (requires sorted data):
negJ <- -J_admissible(1:n / n)   # rank trafo
kader:::mse_hat(sigma = Sigma, Ai = Ai, Bj = negJ,
  h = h, K = dnorm, fnx = fnx0, ticker = TRUE)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.