Description Usage Arguments Details Value Examples
this function of secondary growth model describe the evolution of the square root of the maximum specific growth rate (sqrtmumax) as a function of pH, This is a symetric cardinal pH model developped by Rosso & al.in 1995 with three parameters (pHmin, pHopt, muopt), obtained by fixing pHmax =2
1 | Gamma_pH_3p(pH, pHmin, pHopt, muopt)
|
pH |
a number |
pHmin |
Minimal growth pH #a number |
pHopt |
Optimal growth pH #a number |
muopt |
Optimal growth rate # a number |
\begin{equation}\begin{array}{l} \mathrm{cpm}_{-} \mathrm{pH}_{-} 3 \mathrm{p}<-\text { as.formula }≤ft(\text { sqrtmumax } \sim \operatorname{sqrt}≤ft(≤ft((\mathrm{pH}>=\mathrm{p} \mathrm{Hmin}) \&≤ft(\mathrm{pH}<=≤ft(2^{*} \mathrm{pHopt}-\mathrm{pHmin}\right)\right)\right)\right)\right) \\ * \text { muopt }^{*}(\mathrm{pH}-\mathrm{pHmin})^{*}≤ft(\mathrm{pH}-≤ft(2^{*} \mathrm{pHopt}-\mathrm{pHmin}\right)\right) /≤ft((\mathrm{pH}-\mathrm{pHmin})^{*}(\mathrm{pH}-\right. \\ ≤ft.≤ft.≤ft.≤ft.≤ft(2^{*} \mathrm{pHopt}-\mathrm{pHmin}\right)\right)-(\mathrm{pH}-\mathrm{pHopt})^{\wedge} 2\right)\right)\right) \end{array}\end{equation}
mumax #maximum growth rate # a number
1 2 3 | Gamma_pH_3p(5,4,7,0.5)
Gamma_pH_3p(4,4,7,0.2)
Gamma_pH_3p(7,4,7,2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.