Description Usage Arguments Details Value Examples
This model proposed by Giménez and Dalgaard (2004). It corresponds to the Jameson effect and predicts that one microorganism stops growing when the other has reached its maximum population density (MPD).
1 |
t |
time vector |
state |
initial values of Q1 (physiological state of the first flora),Q2 (physiological state of the second flora), y1 (the flora population 1) and y2 (the flora population 2) for the first time value. |
parameters |
parameter list |
\begin{equation}\begin{aligned} &\frac{d N_{L m}}{d t}=α_{L m}(t) \cdot μ_{\max }^{L m} \cdot≤ft(1-\frac{N_{L m}}{N_{\max }^{L M}}\right) \cdot≤ft(1-\frac{N_{L A B}}{N_{\max }^{L 4 B}}\right)\\ &α_{L m}(t)=\frac{q_{L m}(t)}{1+q_{L m}(t)} ; \quad \frac{d q_{L m}}{d t}=μ_{\max }^{L m} \cdot q_{L m}(t) ; \quad N_{L m}(0)=N_{L m 0}\\ &\frac{d N_{L A B}}{d t}=α_{L A B}(t) \cdot μ_{\max }^{L A B} \cdot≤ft(1-\frac{N_{L A B}}{N_{\max }^{L A B}}\right) \cdot≤ft(1-\frac{N_{L_{m}}}{N_{\max }^{L_{m}}}\right)\\ &α_{L A B}(t)=\frac{q_{L A B}(t)}{1+q_{h, B}(t)} ; \quad \frac{d q_{A B}}{d t}=μ_{\max }^{L A B} \cdot q_{L A B}(t), \quad N_{L A B}(0)=N_{L A B 0} \end{aligned}\end{equation}
dQ1,dQ2,dy1,dy2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(deSolve)
K2=10
Q2=1/((1/exp(-K2))-1)
K1=2
Q1=1/((1/exp(-K1))-1)
state <- c(Q1=Q1,Q2=Q2,y1=1,y2=10)
time <- seq(from=0, to=200, by = 1)
parameters <- c(mumax1 = 0.14, mumax2=0.3, ymax1=100000,ymax2=10000000)
out <- ode(y = c(Q1=1/((1/exp(-2))-1),Q2=1/((1/exp(-10))-1),y1=1,y2=10),
times = seq(from=0, to=200, by = 1),
func = jameson, parms = c(mumax1 = 0.14, mumax2=0.3, ymax1=100000,ymax2=10000000))
plot(out)
plot(time,log10(out[,"y1"]),col="red", lwd = 2, lty = 1)
plot(time,log10(out[,"y2"]),col="green", lwd = 2, lty = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.