library(knitr) library(dplyr) library(Seurat) library(ggplot2) library(lisi) opts_chunk$set( fig.pos = "!h", out.extra = "", warning = F, fig.align = "center", fig.height = 7, fig.width = 7 )
library(BatchNorm) # Import unfiltered Seurat object (included with 'BatchNorm' package) data(PBMCs) # Run "standard" Seurat workflow: # Including filtering by mitochondrial percentage (+5 SD) # Including data normalization, variable gene selection and gene scaling (performed on all samples together) PBMCs <- PBMCs %>% MitoFilter() %>% NormalizeData(normalization.method = "LogNormalize", assay = "RNA", scale.factor = 10000) %>% NormalizeData(verbose = FALSE, assay = "ADT", normalization.method = "CLR") %>% FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>% ScaleData() %>% RunPCA(npcs = 30)
## Identify correct numbers of PCs ## (Takes up to 5 minutes. Not run while rendering vignette for time) # PBMCs.pca.test <- TestPCA(PBMCs) # PBMCs.pca.test[, 1:20] ## 14 PCs with z > 1 ## Proceed with 14 PCs for dimensional reduction & clustering ## Visualize PCs plotted by standard deviation: ElbowPlot(PBMCs)
PBMCs <- PBMCs %>% RunUMAP(reduction = "pca", dims = 1:14) %>% FindNeighbors(reduction = "pca", dims = 1:14) %>% FindClusters(resolution = .8) UMAPPlot(PBMCs, cols = colors.use, group.by = "orig.ident") + ggtitle("Default Workflow")
GetiLISI(object = PBMCs, nSamples = 3)
# For complete cell classification workflow see our vignette "Biaxial Gating of a Single Sample" # More details can be found in figure S3 of our manuscript "Data Matrix Normalization and Merging Strategies Minimize Batch-specific Systemic Variation in scRNA-Seq Data." UMAPPlot(PBMCs, cols = colors.use, pt.size = 2, group.by = "seurat_clusters", label = T) # B_Cells = 14, 16 # T_CD4 = 0, 1, 3, 21, 19 # No TReg cluster (contained within clusters 1 & 3) # T_CD8 = 4, 7, 11 # NK_T = 5, 8 # NK = 6, 10 # NKCD56Hi = 15 # Monocyte_Classical = 2, 9, 12, 17 # Monocyte_NonClassical = 13 # Dendritic_Cells = 18 # HSPCs = 20 # Cycling_Cells = 22 Idents(PBMCs) <- PBMCs[["seurat_clusters"]] Idents(PBMCs) <- plyr::mapvalues(Idents(PBMCs), from = c(14, 16, 0, 1, 3, 21, 19, 4, 7, 11, 5, 8, 6, 10, 15, 2, 9, 12, 17, 13, 18, 20, 22), to = c('B_Cells', 'B_Cells', 'T_CD4', 'T_CD4', 'T_CD4', 'T_CD4', "T_CD4", 'T_CD8', 'T_CD8', 'T_CD8', 'NK_T', 'NK_T', "NK", "NK", 'NK_CD56Hi', 'Monocyte_Classical', 'Monocyte_Classical', 'Monocyte_Classical', 'Monocyte_Classical', 'Monocyte_NonClassical', 'Dendritic_Cells', 'HSPCs', 'Cycling_Cells')) Idents(PBMCs) <- factor(Idents(PBMCs), levels = c("B_Cells", "T_CD4", "TReg", "T_CD8", "NK_T", "NK", "NK_CD56Hi", "Monocyte_Classical", "Monocyte_NonClassical", "Dendritic_Cells", "HSPCs", "Cycling_Cells")) PBMCs[["Cell_Type"]] <- Idents(PBMCs) UMAPPlot(PBMCs, cols = colors.use, label = F) + ggtitle("Cell Type Classifications")
# PBMC Sample 1 data(PBMC1_Single_ID) S1cms <- GetCMS(object = PBMCs, sample.ID = "Sample_01", reference.ID = PBMC1_Single_ID) # PBMC Sample 2 data(PBMC2_Single_ID) S2cms <- GetCMS(object = PBMCs, sample.ID = "Sample_02", reference.ID = PBMC2_Single_ID) # PBMC Sample 3 data(PBMC3_Single_ID) S3cms <- GetCMS(object = PBMCs, sample.ID = "Sample_03", reference.ID = PBMC3_Single_ID) # Average CMS mean(c(S1cms, S2cms, S3cms))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.