library(knitr) library(dplyr) library(Seurat) library(ggplot2) library(lisi) opts_chunk$set( fig.pos = "!h", out.extra = "", warning = F, fig.align = "center", fig.height = 7, fig.width = 7 )
library(BatchNorm) # Import unfiltered Seurat object (included with 'BatchNorm' package) data(package = 'BatchNorm', PBMC4) # Run "standard" Seurat workflow: # Including filtering by mitochondrial percentage (+5 SD) # Including data normalization, variable gene selection and gene scaling (performed on all samples together) PBMC4 <- PBMC4 %>% MitoFilter() %>% NormalizeData(normalization.method = "LogNormalize", assay = "RNA", scale.factor = 10000) %>% NormalizeData(verbose = FALSE, assay = "ADT", normalization.method = "CLR") %>% FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>% ScaleData() %>% RunPCA(npcs = 30)
## Identify correct numbers of PCs ## (Takes up to 5 minutes. Not run while rendering vignette for time) #PBMC4.pca.test <- TestPCA(PBMC4) #PBMC4.pca.test[, 1:20] ## 16 PCs with z > 1 ## Proceed with 16 PCs for dimensional reduction & clustering ## Visualize PCs plotted by standard deviation: ElbowPlot(PBMC4)
PBMC4 <- PBMC4 %>% RunUMAP(reduction = "pca", dims = 1:16) %>% FindNeighbors(reduction = "pca", dims = 1:16) %>% FindClusters(resolution = .8) UMAPPlot(PBMC4, cols = colors.use, group.by = "orig.ident") + ggtitle("Default Workflow")
GetiLISI(object = PBMC4, nSamples = 2)
# For complete cell classification workflow see our vignette "Biaxial Gating of a Single Sample" # More details can be found in figure S3 of our manuscript "Data Matrix Normalization and Merging Strategies Minimize Batch-specific Systemic Variation in scRNA-Seq Data." UMAPPlot(PBMC4, cols = colors.use, pt.size = 2, group.by = "seurat_clusters", label = T) # B_Naive = 7 # B_Memory = 12, 18 # T_CD4 = 0, 1, 4, 6, 16 # TReg = 11 # T_CD8 = 8, 13 # NK_T = 5, 15 # NK = 2, 3 # NK_CD56Hi = 9 # Monocyte_Classical = 10 # Monocyte_NonClassical = 14 # Dendritic_Cells = 17 # HSPCs = 20 # Cycling_Cells = 19 Idents(PBMC4) <- PBMC4[["seurat_clusters"]] Idents(PBMC4) <- plyr::mapvalues(Idents(PBMC4), from = c(7, 12, 18, 0, 1, 4, 6, 16, 11, 8, 13, 5, 15, 2, 3, 9, 10, 14, 17, 20, 19), to = c('B_Naive', 'B_Memory', 'B_Memory', 'T_CD4', 'T_CD4', 'T_CD4', 'T_CD4', 'T_CD4', 'TReg', 'T_CD8', 'T_CD8', 'NK_T', 'NK_T', 'NK', 'NK', 'NK_CD56Hi', 'Monocyte_Classical', 'Monocyte_NonClassical', 'Dendritic_Cells', 'HSPCs', 'Cycling_Cells')) Idents(PBMC4) <- factor(Idents(PBMC4), levels = c("B_Naive", "B_Memory", "T_CD4", "TReg", "T_CD8", "NK_T", "NK", "NK_CD56Hi", "Monocyte_Classical", "Monocyte_NonClassical", "Dendritic_Cells", "HSPCs", "Cycling_Cells")) PBMC4[["Cell_Type"]] <- Idents(PBMC4) UMAPPlot(PBMC4, cols = colors.use, label = F) + ggtitle("Cell Type Classifications")
# PBMC Sample 4-A data(package = 'BatchNorm', PBMC4A_Single_ID) S4Acms <- GetCMS(object = PBMC4, sample.ID = "Sample_4A", reference.ID = PBMC4A_Single_ID) # PBMC Sample 4-B data(package = 'BatchNorm', PBMC4B_Single_ID) S4Bcms <- GetCMS(object = PBMC4, sample.ID = "Sample_4B", reference.ID = PBMC4B_Single_ID) # Average CMS mean(c(S4Acms, S4Bcms))
# Import unfiltered Seurat object (included with 'BatchNorm' package) data(package = 'BatchNorm', PBMC5) # Run "standard" Seurat workflow: # Including filtering by mitochondrial percentage (+5 SD) # Including data normalization, variable gene selection and gene scaling (performed on all samples together) PBMC5 <- PBMC5 %>% MitoFilter() %>% NormalizeData(normalization.method = "LogNormalize", assay = "RNA", scale.factor = 10000) %>% NormalizeData(verbose = FALSE, assay = "ADT", normalization.method = "CLR") %>% FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>% ScaleData() %>% RunPCA(npcs = 30)
# Identify correct numbers of PCs ## (Takes up to 5 minutes. Not run while rendering vignette for time) # PBMC5.pca.test <- TestPCA(PBMC5) # PBMC5.pca.test[, 1:20] ## 14 PCs with z > 1 ## Proceed with 14 PCs for dimensional reduction & clustering ## Visualize PCs plotted by standard deviation: ElbowPlot(PBMC5)
PBMC5 <- PBMC5 %>% RunUMAP(reduction = "pca", dims = 1:14) %>% FindNeighbors(reduction = "pca", dims = 1:14) %>% FindClusters(resolution = .8) UMAPPlot(PBMC5, cols = colors.use, group.by = "orig.ident") + ggtitle("Default Workflow")
GetiLISI(object = PBMC5, nSamples = 2)
# For complete cell classification workflow see our vignette "Biaxial Gating of a Single Sample" # More details can be found in figure S3 of our manuscript "Data Matrix Normalization and Merging Strategies Minimize Batch-specific Systemic Variation in scRNA-Seq Data." UMAPPlot(PBMC5, cols = colors.use, pt.size = 2, group.by = "seurat_clusters", label = T) # B_Naive = 11 # B_Memory = 12 # T_CD4 = 0, 1, 2, 3, 16 # TReg not detected # T_CD8 = 6 # NK_T = 4, 7, 8, 10 # NK = 9 # NK_CD56Hi = 9 # Monocyte_Classical = 5, 15 # Monocyte_NonClassical = 14 # Dendritic_Cells = 17, 18 # HSPCs = 13 (contains erythrocytes) Idents(PBMC5) <- PBMC5[["seurat_clusters"]] Idents(PBMC5) <- plyr::mapvalues(Idents(PBMC5), from = c(11, 12, 0, 1, 2, 3, 16, 6, 4, 7, 8, 10, 9, 5, 15, 14, 17, 18, 13), to = c('B_Naive', 'B_Memory', 'T_CD4', 'T_CD4', 'T_CD4', 'T_CD4', 'T_CD4', 'T_CD8', 'NK_T', 'NK_T', 'NK_T', 'NK_T', 'NK', 'Monocyte_Classical', 'Monocyte_Classical', 'Monocyte_NonClassical', 'Dendritic_Cells', 'Dendritic_Cells', 'HSPCs')) Idents(PBMC5) <- factor(Idents(PBMC5), levels = c("B_Naive", "B_Memory", "T_CD4", "TReg", "T_CD8", "NK_T", "NK", "NK_CD56Hi", "Monocyte_Classical", "Monocyte_NonClassical", "Dendritic_Cells", "HSPCs", "Cycling_Cells")) PBMC5[["Cell_Type"]] <- Idents(PBMC5) UMAPPlot(PBMC5, cols = colors.use, label = F) + ggtitle("Cell Type Classifications")
# PBMC Sample 5-A data(package = 'BatchNorm', PBMC5A_Single_ID) S5Acms <- GetCMS(object = PBMC5, sample.ID = "Sample_5A", reference.ID = PBMC5A_Single_ID) # PBMC Sample 5-B data(package = 'BatchNorm', PBMC5B_Single_ID) S5Bcms <- GetCMS(object = PBMC5, sample.ID = "Sample_5B", reference.ID = PBMC5B_Single_ID) # Average CMS mean(c(S5Acms, S5Bcms))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.