Description Usage Arguments Details Value Author(s) References See Also Examples
multiinformation takes a dataset as input and computes the 
multiinformation (also called total correlation) among the random variables in the dataset.
The value is returned in nats using the entropy estimator estimator. 
1  | multiinformation(X, method ="emp")
 | 
X | 
 data.frame containing a set of random variables where columns contain variables/features and rows contain outcomes/samples.  | 
method | 
 The name of the entropy estimator. The package implements four estimators : 
"emp", "mm", "shrink", "sg" (default:"emp") - see details. 
These estimators require discrete data values - see   | 
"emp" : This estimator computes the entropy of the empirical probability distribution.
"mm" : This is the Miller-Madow asymptotic bias corrected empirical estimator.
"shrink" : This is a shrinkage estimate of the entropy of a Dirichlet probability distribution.
"sg" : This is the Schurmann-Grassberger estimate of the entropy of a Dirichlet probability distribution.
multiinformation returns the multiinformation (also called total correlation) among the variables in the dataset (in nats).
Patrick E. Meyer
Meyer, P. E. (2008). Information-Theoretic Variable Selection and Network Inference from Microarray Data. PhD thesis of the Universite Libre de Bruxelles.
Studeny, M. and Vejnarova, J. (1998). The multiinformation function as a tool for measuring stochastic dependence. In Proceedings of the NATO Advanced Study Institute on Learning in graphical models,
condinformation, mutinformation, interinformation, natstobits
1 2 3  |   data(USArrests)
  dat<-discretize(USArrests)
  M <- multiinformation(dat)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.