knitr::opts_chunk$set(echo = TRUE) # clear the entire environment rm(list = ls()) # clear all data frames from environment rm(list=ls(all=TRUE)[sapply(mget(ls(all=TRUE)), class) == "data.frame"]) # clear all lists from environment rm(list=ls(all=TRUE)[sapply(mget(ls(all=TRUE)), class) == "list"])
library(pheatmap) devtools::load_all() # check()
First, let's look at the default Xsim()
results
subject_sim = 100 num_leaf = 20 covariates_sim = 20 rho = 0.2 num_cov = 15 seed = 222 num_branch = 18 Xmat <- Xsim(subject_sim = subject_sim, # tree = NULL, num_leaf = num_leaf, covariates_sim = covariates_sim, rho = rho, # Sigma = NULL, num_cov = num_cov, seed = seed) str(Xmat) (X0 <- Xmat$X) (I0 <- Xmat$zeta)
## we can always manually Xmat$zeta <- matrix(1, nrow = 6, ncol = 10) dim(X0); dim(I0) # Xmat$zeta <- matrix(1, nrow = 6, ncol = 10) dim(X0); dim(I0) tree0 <- Xmat$tree phytools::plotTree(tree0, node.numbers = T)
Now we have the working design matrix $X^$, this is the $X$ by removing the first column; and the $\zeta^$ matrix now must include the first column of 1s.
Xstar <- Xmat$X[, -1] Xmat$zeta <- rbinom(38 * 20, size = 1, 0.1) %>% matrix(nrow = 38, ncol = 20) Xmat$zeta[, 1] <- 1
data_dtm <- simulate_DTM(subject_sim = subject_sim, tree = Xmat$tree, num_leaf = num_leaf, covariates_sim = covariates_sim, rho = 0.2, X = Xmat$X, zeta_sim = Xmat$zeta, rep = 5, num_cov = num_cov, phi_min = 0.9, phi_max = 1.2, seed = seed) str(data_dtm)
first of all check whether the tree created earlier and the tree used are the same;
The tree is the same; also it has r num_leaf
tips and r num_branch
branches,
so to the end, the final $\zeta$ and $\beta$ matrix will have r num_branch + num_leaf
rows.
because we have r num_cov
but with the first colunm as random intercept,
the final $\beta$ will be a r num_cov - 1
$\times$ r num_cov
matrix;
phytools::plotTree(Xmat$tree, node.numbers = T) phytools::plotTree(data_dtm$tree, node.numbers = T)
str(data_dtm) # View(data_dtm$X) # print(data_dtm$Y) # print(data_dtm$zeta) # print(data_dtm$phi_sim) # View(data_dtm$phi_sim) # View(data_dtm$zeta_sim) # View(data_dtm$phi_sim %*% t(data_dtm$zeta_sim))
The final $\beta$ will be the original one by removing the first column.
the final $\beta$ will be a r num_cov - 1
$\times$ r num_cov
matrix;
betas0 <- data_dtm$phi_sim colors <- c(colorRampPalette(c("green", "black"), bias = 2)(100), colorRampPalette(c("black", "red"), bias = 2)(100)) pheatmap( mat = as.matrix(betas0), color = colors, ## colors from line86 border_color = "grey60", cluster_rows = F, cluster_cols = F, show_colnames = T, show_rownames = T, drop_levels = F, fontsize = 10, frontsize_row = 8, frontsize_col = 8, main = "Heatmap default betas") # pheatmap( # mat = as.matrix(data_dtm$Y[[1]]), # color = colorRampPalette(c("black", "red"), bias = 2)(100), # ## colors from line86 # border_color = "grey60", # cluster_rows = F, # cluster_cols = F, # show_colnames = T, # show_rownames = T, # drop_levels = F, # fontsize = 10, # frontsize_row = 8, # frontsize_col = 8, # main = "Heatmap Clustered")
Design <- data_dtm$X[, -1] beta <- data_dtm$phi_sim[, -1] # save(Design, beta, file = "simulated_00_data.csv")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.