hzar.makeCline1DFreq: Make a cline model with the requested attributes.

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

Constructs a clineMetaModel object for use with hzar.first.fitRequest.old.ML. Said object can be further tailored to the specific model desired, or can be used as-is.

Usage

1
2
3
4
5
hzar.makeCline1DFreq(data = NULL, scaling = "none", tails = "none",
  direction = NULL) 
hzar.makeCline1DCLT(data = NULL, scaling = "free", tails = "none",
  direction = NULL)
hzar.makeCline1DNormal(data, tails = "none")

Arguments

data

A hzar.obsData object, used to determine cline direction and estimate initial values.

scaling

Can be one of three strings:

  • "none"A model with fixed minimum value 0 and maximum value 1 is desired.

  • "fixed"A model with minimum and maximum values fixed to the minimum and maxumimum observed mean values of data is desired.

  • "free"A model with the minimum and maximum value as free parameters is desired.

tails

Can be one of five strings:

  • "none"A model with no exponential tails is desired

  • "right"A model with just one exponential tail on the right is desired.

  • "left"A model with just one exponential tail on the left is desired.

  • "mirror"A model with two exponential tails mirrored about the cline center is desired.

  • "both"A model with two tails with independent parameters is desired.

direction

Can be one of three values:

  • NULLDetermine direction using data

  • "ascending"A model whose estimates increase as the site distance increases is desired.

  • "descending"A model whose estimates decrease as the site distance increases is desired.

Details

The clineMetaModel object returned by hzar.makeCline1DNormal has a slightly diffent structure, due to the complexity of the normal cline model. Use hzar.first.fitRequest.gC instead of hzar.first.fitRequest.old.ML to construct the hzar.fitRequest object needed for hzar.doFit.

Value

A clineMetaModel object, which is a list with the following 4 components:

req

A boolean function of the model parameters w

prior

Description of 'comp1'

func

Description of 'comp1'

parameterTypes

A list of clineParameter objects, named with the parameter names. A clineParameter object structure:

  • Components:

  • valThe initial or fixed value.

  • wThe parameter tuning.

  • Attributes:

  • "param"The parameter name.

  • "fixed"TRUE if the parameter is fixed.

  • "limit.lower"The parameter minimum finite value.

  • "limit.upper"The parameter maximum finite value.

  • "realBTWN01"The parameter is restricted to between 0 and 1.

Author(s)

Graham Derryberry asterion@alum.mit.edu

References

Gay, L., P.-A. Crochet, D. A. Bell, and T. Lenormand. 2008. Comparing clines on molecular and phenotypic traits in hybrid zones: a window on tension zone models. Evolution 62:2789-2806.

Szymura, J., and N. H. Barton. 1986. Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and B. variegata, near Cracow in souhern Poland. Evolution 40:1141-1159.

Szymura, J., and N. H. Barton. 1991. The genetic structure of the hybrid zone between the fire-bellied toads Bombina bombina and B. variegata: comparisons between transects and between loci. Evolution 45:237-261.

See Also

hzar.obsData Locality based observed data. hzar.doNormalData1DRaw Individual observed data. hzar.doMorphoSets Bernouilli transformed individual observed data.

hzar.model.addBoxReq Adding model requirements. hzar.first.fitRequest.old.ML hzar.first.fitRequest.gC

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
data(manakinMolecular);
mknAdaA <-
  hzar.doMolecularData1DPops(manakinMolecular$distance,
                             manakinMolecular$ada.A,
                             manakinMolecular$ada.nSamples);
mknAdaAm <-
  hzar.makeCline1DFreq(mknAdaA, scaling="fixed",tails="none");
str(mknAdaAm);
## compile using this method:
mknAdaAFR <-
hzar.first.fitRequest.old.ML(model=mknAdaAm, obsData=mknAdaA)
hzar.plot.cline(mknAdaAFR)

data(manakinMorphological)
data(manakinLocations)
mknCCbt <-
  hzar.doMorphoSets("collar.color",
                    tDist=manakinLocations,
                    tDLocCol="LocalityID",
                    tDDistCol="distance",
                    tValues=manakinMorphological,
                    tVLocCol="Locality")$collar.color
mknCCbtM <-
  hzar.makeCline1DFreq(mknCCbt, scaling="fixed",tails="none");
str(mknCCbt);
## compile using this method:
mknCCbtFR <-
  hzar.first.fitRequest.old.ML(model=mknCCbtM, obsData=mknCCbt)
hzar.plot.cline(mknCCbtFR)

data(manakinMorphological);
data(manakinLocations);
mknBLg <-
  hzar.doNormalData1DRaw(
    hzar.mapSiteDist(siteID=manakinLocations$LocalityID,
                     distance=manakinLocations$distance),
    traitSite=manakinMorphological$Locality,
    traitValue=manakinMorphological$beard.length)
hzar.plot.obsData(mknBLg)
mknBLgM <-
  hzar.makeCline1DNormal(mknBLg, tails="none");

## Emulate scaling="fixed"

hzar.meta.fix(mknBLgM)$muL <- TRUE
hzar.meta.fix(mknBLgM)$muR <- TRUE
## Use variance of site at the left (site A) and right (site L). 
hzar.meta.init(mknBLgM)$varL<-mknBLg$frame["A","var"]
hzar.meta.init(mknBLgM)$varR<-mknBLg$frame["L","var"]
hzar.meta.fix(mknBLgM)$varL <- TRUE
hzar.meta.fix(mknBLgM)$varR <- TRUE

## compile using this method:
mknBLgFR <- hzar.first.fitRequest.gC(gModel=mknBLgM, obsData=mknBLg)
hzar.plot.cline(mknBLgFR)

data(manakinMorphological);
data(manakinLocations);
bcD=manakinLocations[manakinMorphological$Locality,
                     "distance"]
bcV=manakinMorphological$belly.color
bcV=bcV[!is.na(bcD)];bcD=bcD[!is.na(bcD)];
bcD=bcD[!is.na(bcV)];bcV=bcV[!is.na(bcV)];
mknBCclt <-
  hzar.doCLTData1DRaw( distance=bcD,traitValue=bcV)
## Not run: 
hzar.plot.obsData(mknBCclt)

## End(Not run)
mknBCcltM <-
  hzar.makeCline1DCLT(mknBCclt, scaling="free", tails="none");

GrahamDB/hzar documentation built on Oct. 27, 2019, 2:20 a.m.